

REPORT

Emission Summary and Dispersion Modelling Report, v.2.0

Lehigh Hanson Materials Limited - Picton Cement Plant

Submitted to:

Lehigh Hanson Materials Limited

1370 Highway 49 Picton, ON K0K 2T0

Submitted by:

Golder Associates Ltd.

1931 Robertson Road, Ottawa, Ontario, K2H 5B7, Canada

Distribution List

1 e-copy - Lehigh Hanson Materials Limited

1 e-copy - Golder Associates Ltd., Ottawa

Document Version Control

This Emission Summary and Dispersion Modelling (ESDM) Report documents the operations at the Lehigh Picton Cement Facility, Lehigh Hanson Materials Limited in Picton, Ontario (the Facility) and has been prepared in accordance with s.26 of Ontario Regulation 419/05 (O. Reg. 419/05) to document compliance with s. 20 of O. Reg. 419/05. The Report is a living document and should be kept up-to-date at all times. Therefore, it is necessary to have appropriate version control. This version control will allow facility personnel, compliance auditors, or the Ontario Ministry of the Environment, Conservation and Parks (the Ministry) to track and monitor ESDM Report changes over time.

As facility operations change and sources are added to or removed from the Facility, this ESDM Report will need to be updated as required. These changes are to be documented in a Modification Log. The Modification Log is included in Appendix A. For future versions, changes listed in the Modification Log will have been incorporated into the ESDM Report. When the ESDM Report is updated, the version number will be changed to correspond with the information in the Modification Log.

Version	Date	Revision Description	Prepared By	Reviewed By (Facility Contact)
1.0	October 2017	Original ESDM Report to support the ECA Application	Golder Associates Ltd.	Nick Papanicolaou
1.1	November 2019	This ESDM includes the following changes since the ESDM Report version 1.0 was last prepared: Refined emission inventory at the request of the Ministry to use AP-42 emission factors from the Kilns, raw mills and primary and secondary crusher and CEMS data where applicable; accurate as of December 2018. Updated AERMOD model to v.16216R and with site-specific meteorology; accurate as of December 2018 Included an assessment of transitional operating conditions; accurate as of March 2019	Golder Associates Ltd.	Nick Papanicolaou
1.2	August 2020	Revised TOC assessment to include update 2019 CEMS data	Golder Associates Ltd.	Nick Papanicolaou

\\S|) GOLDER

i

Version	Date	Revision Description	Prepared By	Reviewed By (Facility Contact)
1.3	June 2021	Updated AERMOD model to v.19191 with site-specific meteorology accurate as of December 2020. Revised TOC assessment to include update of 2020 CEMS data for nitrogen oxides and sulphur dioxide. Updated source testing emission rates, where applicable on Kiln 4 and Kiln 4 Bypass Refined PM10 and crystalline silica emissions from QUARRY5, VFUG4 and VFUG4A, COALSHIP and COALGYP, COALTD and GYPTD, MISCDROP, CKD and VFUG5. Removed the following compounds from Kiln 3 as it did not operate in 2020: Ammonium, Chloride, Nitrate, Potassium, Sodium and Sulfate. Lime injection was trialed on Kiln 4 but this did not change the emission estimating methods or the modelling directly.	Golder Associates Ltd.	Nick Papanicolaou
1.4	June 2022	Revised TOC assessment to include update of 2021 CEMS data for carbon monoxide, nitrogen oxides and sulphur dioxide. Updated source testing emission rates, where applicable on Kiln 4 and Kiln 4 Bypass Added phosphorus and tin as contaminants from the updated source testing on Kiln 4 and Kiln 4 bypass Removed sources 5-24,25,29,30 (SRCID 30,32,37,38) that were decommissioned in 2021. Added ammonia injection control on Kiln 4 including emissions of ammonia slip.	Golder Associates Ltd.	Nick Papanicolaou
2.0	November 2022	Assessed the use of alternative low-carbon fuels (ALCFs) to fuel the process kiln Added magnesium and tungsten as contaminants from ALCFs Removed sources associated with Kiln 3 Added dust collector associated with cement dome conversion	Golder Associates Ltd.	Nick Papanicolaou

Executive Summary

This Emission Summary and Dispersion Modelling (ESDM) Report was prepared to support an application for an amendment to Environmental Compliance Approval (ECA) with Limited Operational Flexibility (LOF) for air and noise under Part II.1 of the *Ontario Environmental Protection Act* (EPA) for Lehigh Hanson Materials Limited (Lehigh) cement manufacturing facility located at 1370 Highway 49, Picton, Ontario (the Facility). Lehigh is undertaking efforts to use Alternative Low Carbon Fuels (ALCFs) to supplement the energy required to make Portland Cement at their Facility. ALCFs are in use in many cement plants all over the world and represent a proven technology to reduce greenhouse gas emissions. The Facility currently operates under ECA Number 0073-BHGQHC, issued October 31, 2019.

Lehigh has prepared an application under Part II.1 of the Ontario Environmental Protection Act (EPA) to amend the existing ECA, to allow for a Non-Demonstration (Permanent) Project to use ALCFs at the Site, satisfying Ontario Regulation (O. Reg.) 79/15 (as amended by O. Reg. 54/21 and 824/21) (the ECA Amendment Application).

As part of the ECA Amendment Application, Lehigh is requesting approval to for the following:

- An ALCF daily throughput of up to 200 tonnes per day, which may include the following materials:
 - Construction & Demolition (C&D) Materials; including but not limited to primarily wood material with minor amounts of non-recyclable paper and plastic.
 - Industrial, Commercial, and Institutional (IC&I) Materials; including but not limited to primarily non-recyclable paper, plastic and textiles wood material, and tire fibre and fluff.
 - The combustible fraction of non-recyclable household waste (commonly referred to as Refuse Derived Fuel [RDF]).
 - Discarded treated seed.
- Installation of new conveyance and storage equipment for ALCFs at the site using enclosed containers and buildings.
- Renew the LOF condition 2.1 of ECA Number 0073-BHGQHC, which expires on July 1, 2023.

The contents of this ESDM Report satisfy the requirements of s.26 of Ontario Regulation 419/05 (O. Reg. 419/05). In addition, guidance in the Ontario Ministry of the Environment, Conservation and Parks (the Ministry) "Guideline A-10: Procedure for Preparing an Emission Summary and Dispersion Modelling (ESDM) Report, Version 4.1", dated March 2018 (ESDM Procedure Document) PIBS 3614e04.1 was followed, as appropriate.

The Facility includes quarry operations comprising of blasting and drilling, limestone crushing, a process kiln with a pre-heater equipped with an ESP that is currently fueled with a mixture of low sulphur coal (LSC) and petroleum coke (petcoke), and eight mills equipped with baghouses. It can operate up to 24 hours per day, seven days per week, 52 weeks per year and has a proposed maximum production limit of 1.4 million metric tonnes of clinker manufactured per year using a maximum of 200 metric tonnes of ALCFs per day to fuel the process kiln. The Facility is expected to emit suspended particulate matter (SPM), metals, crystalline silica and products of combustion.

The North American Industry Classification System (NAICS) code that best applies to the Facility is 327310 (Cement manufacturing).

The maximum emission rates for each significant contaminant emitted from the significant sources were calculated in accordance with s.11 of O. Reg. 419/05 and the data quality assessment follows the classification system outlined in the ESDM Procedure Document. Some of the sources were considered negligible in accordance with s.8 of O. Reg. 419/05.

The modelling scenario, for the relevant averaging period, assumed operating conditions for the Facility that result in the highest concentration of each significant contaminant at a Point of Impingement (POI). A POI concentration for each significant contaminant emitted from the Facility was calculated based on the emission rate estimates and the output from the dispersion model; the results are presented in the Emission Summary Table (Table I) in accordance with s.26 of O. Reg. 419/05.

The POI concentrations in the Emission Summary Table were compared against the applicable s.20 standards and guidelines listed as Benchmark 1 in the *Air Contaminants Benchmark (ACB) List*, dated April 2018 (List of Ministry POI Limits).

For normal operations, at 48% crystalline silica is the highest predicted concentration relative to the corresponding Ministry Limit.

At 68%, nitrogen oxides under the Transitional Operating Conditions (Table II) has the highest predicted POI concentration relative to the corresponding 1-hour Ministry POI Limit.

Contaminants released by the Facility that do not have Benchmark 1 standards or guidelines in the ACB List are considered to be 'Contaminants with No Ministry POI Limits'. Where applicable, predicted POI concentrations of Contaminants with No Ministry POI Limits were screened against the Benchmark 2 screening levels in the ACB List or the *de minimus* limit. For Contaminants with No Ministry POI Limits whose predicted POI concentrations were found to be above the Benchmark 2 screening level or the *de minimus* limit, a "Supporting Information for a Maximum Ground Level Concentration Acceptability Request for Compounds with no Ministry POI Limit Supplement to Application for Approval, EPA s.9" Form was submitted to the Ministry as part of the ECA application in February 2018.

This ESDM Report demonstrates that the Facility can operate in compliance with s.20 of O. Reg. 419/05.

Table I: Emission Summary Table – Normal Operating Conditions

		Total Facility	Air	Maximum POI		Ministry					Percentage of	Model		.,
Contaminant	CAS No.	Emission Rate [g/s]	Dispersion Model Used ⁽¹⁾	Concentration [µg/m³]	Averaging Period	POI Limit [µg/m³]	Limiting Effect	Schedule	Source	Benchmark	Ministry Limit [%]	Run Name	Notes	Version of ACB List (2)
Acenaphthylene	208-96-8	2.67E-03	AERMOD	8.54E-04	24	0.1	_	_	De Minimus	_	Below De Minimus	Unit Run		
Aluminum	7429-90-5	5.89E-01	AERMOD	1.09E+00	24	12	Health	Sch. 3	SL-JSL	B2	Below B2	Unit Run		v2
Ammonia	7664-41-7	7.19E+00	AERMOD	2.30E+00	24	100	Health	Sch. 3	Standard	B1	2%	Unit Run	ACB List (URT - Note 4, Table 4)	v2
Ammonium	14798-03-9	4.89E+00	AERMOD	9.05E+00	24	14.5	_	_	Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		
Arsenic	7440-38-2	3.84E-04	AERMOD	3.98E-04	24	0.3	Health	Sch. 3	Guideline	B1	<1%	Unit Run		v2
Barium	7440-39-3	2.82E-02	AERMOD	7.06E-02	24	10	Health	Sch. 3	Guideline	B1	<1%	Unit Run		v2
Benzaldehyde	100-52-7	1.09E-03	AERMOD	2.01E-03	24	2	Health	Sch. 3	SL-JSL	B2	Below B2	Unit Run		v2
Benzene	71-43-2	7.26E-02	AERMOD	2.54E-03	Annual	0.45	Health	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 19, Table 2, 3, URT - Note 4, Table 4)	v2
Benzene	71-43-2	7.26E-02	AERMOD	2.36E-02	24	100	_	Sch. 6	DAV	_	Below DAV	Unit Run	, ,	
Benzene	71-43-2	7.26E-02	AERMOD	2.54E-03	Annual	4.5	_	_	AAV	_	Below AAV	Unit Run		
Benzo(a)pyrene	50-32-8	2.97E-06	AERMOD	1.08E-07	Annual	0.00001	Health	Sch. 3	Standard	B1	1%	Unit Run	ACB List (Note 7, 19, Table 2, 3, URT - Note 4, Table 4)	v2
Benzo(a)pyrene	50-32-8	2.97E-06	AERMOD	1.02E-06	24	0.005	_	Sch. 6	DAV	_	Below DAV	Unit Run	,	
Benzo(a)pyrene	50-32-8	2.97E-06	AERMOD	1.08E-07	Annual	0.0001	_	_	AAV	_	Below AAV	Unit Run		
Beryllium	7440-41-7	1.60E-05	AERMOD	8.19E-06	24	0.01	Health	Sch. 3	Standard	B1	<1%	Unit Run		v2
Bismuth	7440-69-9	4.56E-01	AERMOD	1.54E+00	24	2.5	Health	Sch. 3	SL-JSL	B2	Below B2	Unit Run		v2
C3 benzenes	N/A-10	1.18E-04	AERMOD	2.18E-04	24	0.1	_	_	De Minimus	_	Below De Minimus	Unit Run		
C4 benzenes	N/A-11	2.72E-04	AERMOD	5.03E-04	24	0.1	_	_	De Minimus	_	Below De Minimus	Unit Run		
Cadmium	7440-43-9	6.49E-04	AERMOD	1.61E-03	24	0.025	Health	Sch. 3	Standard	B1	6%	Unit Run	ACB List (URT - Note 4, Table 4)	v2
Calcium Oxide	1305-78-8	5.51E+00	AERMOD	1.68E+00	24	10	Corrosion	Sch. 3	Standard	B1	17%	Calcium Oxide		
Carbon Dioxide	124-38-9	8.15E+04	AERMOD	1.26E+05	24	255800	Health	Sch. 3	SL-PA	B2	Below B2	Carbon Dioxide		v2
Carbon Monoxide	630-08-0	6.01E+01	AERMOD	3.44E+01	1/2	6000	Health	Sch. 3	Standard	B1	<1%	Carbon Monoxide	ACB List (Note 9)	v2
Chloride	N/A-5	1.54E+01	AERMOD	5.09E+00	24	5.176	_	_	Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		
Chromium	7440-47-3	1.28E-03	AERMOD	3.80E-03	24	0.5	Health	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 11a, URT - Note 4, Table 4)	v2
Cobalt	7440-48-4	1.33E-02	AERMOD	7.12E-03	24	0.1	Health	Sch. 3	Guideline	B1	7%	Unit Run	. ,	v2
Copper	7440-50-8	1.21E-01	AERMOD	4.87E-02	24	50	Health	Sch. 3	Standard	B1	<1%	Unit Run		v2
Crystalline Silica	14808-60-7	1.91E+00	AERMOD	2.41E+00	24	5	Health	Sch. 3	Guideline	B1	48%	Crystalline Silica		v2
Dioxins and Furans (TEQ)	N/A	1.87E-09	AERMOD	5.90E-10	24	0.0000001	Health	Sch. 3	Standard	B1	<1%	Dioxins and Furans (TEQ)	ACB List (Note 8, 8a, Table 1, URT - Note 4, Table 4)	v2
Fluoranthene	206-44-0	1.99E-04	AERMOD	6.41E-05	24	0.1	_	_	De Minimus	_	Below De Minimus	Unit Run		
			•	•										

WSD GOLDER

Contaminant	CAS No.	Total Facility Emission Rate [g/s]	Air Dispersion Model Used ⁽¹⁾	Maximum POI Concentration [µg/m³]	Averaging Period	Ministry POI Limit [µg/m³]	Limiting Effect	Schedule	Source	Benchmark	Percentage of Ministry Limit [%]	Model Run Name	Notes	Version of ACB List (2)
Fluorene	86-73-7	4.26E-04	AERMOD	1.37E-04	24	0.1	_	_	De Minimus	_	Below De Minimus	Unit Run		
Hydrogen chloride	7647-01-0	1.04E+01	AERMOD	3.22E+00	24	20	Health	Sch. 3	Standard	B1	16%	Hydrogen chloride	ACB List (URT - Note 4, Table 4)	v2
Hydrogen Fluoride	7664-39-3	2.28E-02	AERMOD	1.47E-02	24	1.72	Vegetation	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 2, 20)	v2
Hydrogen Fluoride	7664-39-3	2.28E-02	AERMOD	5.73E-03	30-day	0.69	Vegetation	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 2, 20)	v2
Iron	7439-89-6	8.41E-01	AERMOD	1.40E+00	24	4	Health	Sch. 3	Standard	B1	35%	Iron		v2
Lead	7439-92-1	1.90E-02	AERMOD	1.45E-02	24	0.5	Health	Sch. 3	Standard	B1	3%	Unit Run	ACB List (Note 2, URT - Note 4, Table 4)	v2
Lead	7439-92-1	1.90E-02	AERMOD	5.64E-03	30-day	0.2	Health	Sch. 3	Standard	B1	3%	Unit Run	ACB List (Note 2, URT - Note 4, Table 4)	v2
Magnesium	7439-95-4	4.56E-01	AERMOD	1.54E+00	24	72	Health	_	SL-MD	B2	Below B2	Unit Run		
Manganese	7439-96-5	2.24E-02	AERMOD	1.60E-02	24	0.4	Health	Sch. 3	Standard	B1	4%	Unit Run	ACB List (URT - Note 4, Table 4)	v2
Mercury	7439-97-6	4.48E-02	AERMOD	1.46E-02	24	2	Health	Sch. 3	Standard	B1	<1%	Unit Run		v2
Nickel	7440-02-0	5.27E-03	AERMOD	3.08E-04	Annual	0.04	Health	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 19, Table 2, 3, URT - Note 4, Table 4)	v2
Nickel	7440-02-0	5.27E-03	AERMOD	3.19E-03	24	2	_	Sch. 6	DAV	_	Below DAV	Unit Run		
Nickel	7440-02-0	5.27E-03	AERMOD	3.08E-04	Annual	0.4	_	_	AAV	_	Below AAV	Unit Run		
Nitrate	14797-55-8	2.08E-01	AERMOD	3.85E-01	24	0.62	_	_	Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		
Nitrogen Oxides	10102-44-0	1.19E+02	AERMOD	3.36E+01	24	200	Health	Sch. 3	Standard	B1	17%	Nitrogen Oxides	ACB List (Notes 2, 17)	v2
Nitrogen Oxides	10102-44-0	1.19E+02	AERMOD	1.42E+02	1	400	Health	Sch. 3	Standard	B1	36%	Nitrogen Oxides	ACB List (Notes 2, 17)	v2
PCBs	1336-36-3	1.76E-04	AERMOD	5.68E-05	24	0.15	Health	Sch. 3	Guideline	B1	<1%	Unit Run	ACB List (Note 8a)	v2
Phenanthrene	85-01-8	9.06E-03	AERMOD	2.90E-03	24	0.1	_	_	De Minimus	_	Below De Minimus	Unit Run		
Phosphorus	7723-14-0	1.29E-01	AERMOD	6.86E-02	24	0.5	Health	Sch. 3	SL-MD	B2	Below B2	Unit Run		
Potassium	7440-09-7	8.15E-01	AERMOD	1.51E+00	24	2.42	Health	Sch. 3	Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		v2
Pyrene	129-00-0	9.97E-05	AERMOD	3.22E-05	24	0.1	_	_	De Minimus	_	Below De Minimus	Unit Run		
Selenium	7782-49-2	7.92E-03	AERMOD	1.64E-02	24	10	Health	Sch. 3	Guideline	B1	<1%	Unit Run		v2
Silicon	7440-21-3	6.67E+00	AERMOD	3.53E+00	24	27	Health	Sch. 3	SL-PA	B2	Below B2	Unit Run		
Sodium	7440-23-5	1.36E+00	AERMOD	1.83E+00	24	5.39	_	_	Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		
Sulfate	14808-79-8	4.69E+00	AERMOD	2.00E+00	24	2.36	_	_	Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		
Sulfur trioxide	7446-11-9	2.23E+00	AERMOD	1.07E+00	24	5	Health	Sch. 3	SL-JSL	B2	Below B2	Sulfur trioxide		v2

NS) GOLDER

Contaminant	CAS No.	Total Facility Emission Rate [g/s]	Air Dispersion Model Used ⁽¹⁾	Maximum POI Concentration [µg/m³]	Averaging Period	Ministry POI Limit [µg/m³]	Limiting Effect	Schedule	Source	Benchmark	Percentage of Ministry Limit [%]	Model Run Name	Notes	Version of ACB List ⁽²⁾
Sulphur dioxide	7446-09-5	1.36E+01	AERMOD	3.84E+00	24	275	Health & Vegetation	Sch. 3	Standard	B1	1%	Sulphur dioxide	ACB List (Effective until July 1, 2023, Note 2, URT - Note 4, Table 4)	v2
Sulphur dioxide	7446-09-5	1.36E+01	AERMOD	1.61E+01	1	690	Health & Vegetation	Sch. 3	Standard	B1	2%	Sulphur dioxide	ACB List (Effective until July 1, 2023, Note 2, URT - Note 4, Table 4)	v2
SPM	N/A	2.01E+01	AERMOD	3.52E+01	24	120	Visibility	Sch. 3	Standard	B1	29%	SPM		v2
Tin	7440-31-5	1.29E-01	AERMOD	6.03E-02	24	10	Health	Sch. 3	Standard	B1	<1%	Unit Run		
Tungsten	7440-33-7	4.56E-01	AERMOD	1.54E+00	24	5	Health	_	SL-JSL	B2	Below B2	Unit Run		
Zinc	7440-66-6	4.68E-01	AERMOD	1.55E+00	24	120	Particulate	Sch. 3	Standard	B1	1%	Unit Run		

Notes:

- 1. AERMOD v.19191 was used for all contaminants
- 2. v2 = Version 2.0 April 2018
- 3. "SL-JSL" = Screening Limit Jurisdictional Screening Limit, "SL-MD" = Screening Limit Ministry-derived, "SL-PA" = Screening Limit Previously Accepted", "URT" = Upper Risk Threshold, "DAV" = Daily Assessment Value, "AAV" = Annual Assessment Value, "Previously Approved MAXGLC" = Previously Approved Limit using the Maximum Ground Level Concentration Assessment submitted with the ECA Amendment.

WSD GOLDER

Table II: Emission Summary Table – Transitional Operating Conditions

Contaminant	CAS No.	Total Facility Emission Rate [g/s]	Air Dispersion Model Used ⁽¹⁾	Maximum POI Concentration [µg/m³]	Averaging Period	Ministry POI Limit [µg/m³]	Limiting	Schedule	Source	Benchm ark	Percentage of Ministry Limit [%]	Model Run Name	Notes	Version of ACB List ⁽²⁾
Carbon Monoxide	630-08-0	1.79E+02	AERMOD	2.18E+02	1/2	6000	Health	Sch. 3	Standard	B1	4%	Carbon Monoxide	ACB List (Note 9)	v2
Nitrogen Oxides	10102-44-0	2.17E+02	AERMOD	6.61E+01	24	200	Health	Sch. 3	Standard	B1	33%	Nitrogen Oxides	ACB List (Notes 2, 17)	v2
Nitrogen Oxides	10102-44-0	2.17E+02	AERMOD	2.72E+02	1	400	Health	Sch. 3	Standard	B1	68%	Nitrogen Oxides	ACB List (Notes 2, 17)	v2
Sulphur dioxide	7446-09-5	1.79E+02	AERMOD	6.23E+01	24	275	Health & Vegetation	Sch. 3	Standard	B1	23%	Sulphur dioxide	ACB List (Effective until July 1, 2023, Note 2, URT - Note 4, Table 4)	v2
Sulphur dioxide	7446-09-5	1.79E+02	AERMOD	2.40E+02	1	690	Health & Vegetation	Sch. 3	Standard	B1	35%	Sulphur dioxide	ACB List (Effective until July 1, 2023, Note 2, URT - Note 4, Table 4)	v2
SPM	N/A	2.47E+01	AERMOD	3.52E+01	24	120	Visibility	Sch. 3	Standard	B1	29%	SPM		v2

Notes:

1. AERMOD v.19191 was used for all contaminants

2. v2 = Version 2.0 - April 2018

EMISSION SUMMARY AND DISPERSION MODELLING REPORT CHECKLIST

Company Name:	Lehigh Hanson Materials Limited
Company Address:	1370 County Rd 49, Prince Edward, ON
Location Facility	1370 County Rd 49, Prince Edward, ON
O. Reg. 419/05 and the guid Dispersion Modelling Report	mary and Dispersion Modelling Report was prepared in accordance with s.26 of lance in the MECP document "Procedure for Preparing an Emission Summary and "dated March 2018 and "Air Dispersion Modelling Guideline for Ontario" dated mum required information identified in the check-list on the reverse of this sheet has been
Company Contact:	
Name:	Nick Papanicolaou
Title:	Environmental Manager
Phone Number:	613-438-0361
Signature:	41.70
Date:	November 24, 2022
Technical Contact:	
Name:	Jeff Zywicki
Representing:	Golder Associates Ltd.
Phone Number:	613-592-9600 ext. 3253
Signature:	MIA.

November 24, 2022

Date:

		Required Information		
			Submitted	Explanation/ Reference
	Executiv	ve Summary and Emission Summary Table		
	1.1	Overview of ESDM Report	⊠ Yes	Executive Summary
	1.2	Emission Summary Table	⊠ Yes	Table I
1.0	Introduc	tion and Facility Description		
1.0	1.1	Purpose and Scope of ESDM Report		Section 1.1
	1.2	Description of Processes and NAICS code(s)	⊠ res ⊠ Yes	Section 1.1
	1.3	Description of Products and Raw Materials	⊠ res ⊠ Yes	
		· · · · · · · · · · · · · · · · · · ·		Section 1.3
	1.4	Process Flow Diagram	⊠ Yes	Section 1.4
	1.5	Operating Schedule		Section 1.5
2.0		entification of Sources and Contaminants	N 1	0 11 0.1
	2.1	Sources and Contaminants Identification Table		Section 2.1
3.0	Assessm	nent of the Significance of Contaminants and Sources		
	3.1	Identification of Negligible Contaminants and Sources		Section 3.1
	3.2	Rationale for Assessment	⊠ Yes	Section 3.3
4.0	Operatin	g Conditions, Emission Estimating and Data Quality		
0	4.1	Description of operating conditions, for each significant	⊠ Yes	
	7.1	contaminant that results in the maximum POI concentration for that contaminant	Z 103	Section 4.1
	4.2	Explanation of Method used to calculate the emission rate for each contaminant	⊠ Yes	Section 4.3
	4.3	Sample calculation for each method		Section 4.4
	4.4	Assessment of Data Quality for each emission rate	⊠ Yes	Section 4.5
5.0	Source	Summary Table and Property Plan		
3.0			N 1 1 1	Table 2a and
	5.1	Source Summary Table* – sorted by sources	⊠ Yes	2b
	5.2	Source Summary Table* – sorted by contaminant	☐ Yes	N/A as Source Summary Table sorted by sources provided
	5.3	Site Plan (scalable)		Figure 1
	5.4	A scalable roof layout indicating discharge locations and air intakes		Figure 4
6.0	Dispersi	on Modelling		
	6.1	Dispersion Modelling Input Summary Table		Table 3
	6.2	Land Use Zoning Designation Plan	⊠ Yes	Figure 2
	6.3	Dispersion Modelling Input and Output Files	⊠ Yes	Appendix F
7 0	Fmissio	n Summary Table and Conclusions		
7.0	_111133101	Touristally Tubic und Continuoions		Section 7.1,
	7.1	Emission Summary Table	⊠ Yes	Table 5a and
	7.2	Assessment of Contaminants with no MECP POI Limits	⊠ Yes	Section 7.3

	Required Information		
		Submitted	Explanation/ Reference
7.3	Assessment Values (if contaminants with Annual Standards are emitted – see Technical Bulletin - Methodology For Using "Assessment Values" For Contaminants With Annual Air Standards under O. Reg. 419/05)	⊠ Yes	Section 7.4
7.4	Conclusions		Section 8.0
Appendi	ces		
	nt of Frequency of Exceedances (if applicable) (see section 30 nts for URTs and section 33 requirements for site-specific standards)	☐ Yes	
 Methodo 	nt of Frequency of Exceedances (if applicable) (see Technical Bulletin logy For Using "Assessment Values" minants With Annual Air Standards under O. Reg. 419/05	☐ Yes	
	A – Modification Log	⊠ Yes	
	B – Emission Rate Calculations	⊠ Yes	
	C – Supporting Information for Negligibility	⊠ Yes	
Appendix	D – Supporting Information for Emission Rate Calculations		
Appendix	E – Supporting Information for Dispersion Modelling		
Appendix	F – Dispersion Modelling Files		
Appendix	G - Transitional Operating Conditions		
Appendix	H – ALCF Emission Increase Methodology		
Appendix	I – Lehigh Supporting Documents		
Appendix	J – In-stack Limit Comparison		
	K – Emission Rate and Maximum POI Concentration Comparison with out ALCFs	⊠ Yes	

Table of Contents

DOC	JUMEN	NI VERSION CONTROL	I
EXE	CUTIV	E SUMMARY	iii
1.0	INTR	ODUCTION AND FACILITY DESCRIPTION	1
	1.1	Purpose and Scope of ESDM Report	1
	1.2	Description of Processes and NAICS Code(s)	2
	1.3	Description of Products and Raw Materials	2
	1.4	Process Flow Diagram	5
	1.5	Operating Schedule	5
	1.6	Facility Production Limit	5
	1.7	Summary of Modifications	5
2.0	INITI	AL IDENTIFICATION OF SOURCES AND CONTAMINANTS	5
	2.1	Sources and Contaminants Identification Table	5
3.0	ASSE	ESSMENT OF THE SIGNIFICANCE OF CONTAMINANTS AND SOURCES	7
	3.1	Identification of Negligible Contaminants and Sources	7
	3.2	Identification of Significant Contaminants Using an Emission Threshold	8
	3.3	Rationale for Assessment	8
4.0	OPE	RATING CONDITIONS, EMISSION ESTIMATING AND DATA QUALITY	9
	4.1	Description of Normal Operating Conditions	9
	4.2	Description of ALCF Emission Rate Estimates	11
	4.3	Description of Transitional Operating Conditions	12
	4.4	Explanation of the Methods Used to Calculate Emission Rates	12
	4.5	Sample Calculations	12
	4.6	Assessment of Data Quality	13
	4.7	Conservatism of Emission Estimates and Operating Condition	13
5.0	SOU	RCE SUMMARY TABLE AND SITE PLAN	14
	5.1	Source Summary Table	14
	5.2	Site Plan	14

6.0	DISPE	ERSION MODELLING	15
	6.1	Dispersion Modelling Input Summary Table	15
	6.1.1	Dispersion Modelling Source Parameters	15
	6.2	Land Use Zoning Designation Plan	16
	6.3	Coordinate System	16
	6.4	Meteorology and Surrounding Land Use	16
	6.5	Terrain	16
	6.6	Receptors	16
	6.7	Building Downwash	17
	6.8	Averaging Periods and Conversions	17
	6.9	Dispersion Modelling Options	17
	6.10	Special Modelling Considerations	17
	6.10.1	Shoreline Fumigation	18
	6.11	Dispersion Modelling Input and Output Files	18
	6.11.1	Unit Run Model Screening	18
	6.11.2	Contaminant Specific Models	18
	6.12	Consideration of New SO2 Standard	19
7.0	EMIS	SION SUMMARY TABLE	19
	7.1	Emission Summary Table	19
	7.2	Emission Summary Table Comparison with and without ALCFs	19
	7.3	Assessment of Contaminants with no MECP POI Limits	19
	7.4	Assessment of Contaminants with Annual Standards	20
	7.5	Assessment of Contaminants with In-Stack Emission Limits	20
	7.6	Summary of Assessment	20
8.0	CONC	CLUSIONS	21
9.0	LIMIT	ATIONS OF REPORT	22
	9.1	Standard of Care	22
	9.2	Basis and Use of the Report	22

TABLES

Table I: Emission Summary Table – Normal Operating Conditions	V
Table II: Emission Summary Table – Transitional Operating Conditions	viii
Table III: Expected Contaminants from the Facility	6
Table IV: Emission Methodology and Rate Summary	9
Table V: ALCF Contaminant Screening Summary	12
Table VI: Required Information on Figures Summary	14
Table VII: AERMOD Modelling Options	17
Table VIII: Wind Class and Emission Rate Fractions	18

TABLES (FOLLOWING REPORT BODY)

- Table 1: Sources and Contaminants Identification Table
- Table 2a: Source Summary Table (Normal Condition)
- Table 2b: Source Summary Table (Transitional Operating Condition)
- Table 3: Dispersion Modelling Input Table
- Table 4: Supplemental Dispersion Modelling Summary Table
- Table 5a: Emission Summary Table (Normal)
- Table 5b: Emission Summary Table (Transitional Operating Condition)

FIGURES

- Figure 1: Site Location Plan
- Figure 2: Land Use Zoning Designation Plan
- Figure 3: Simplified Process Flow Diagram
- Figure 4: Exhaust Source and Exhaust Location Plan
- Figure 5: Dispersion Modelling Plan

APPENDICES

APPENDIX A

Modification Log

APPENDIX B

Emission Rate Calculations

APPENDIX C

Supporting Information for Assessment of Negligibility

APPENDIX D

Supporting Information for Emission Rate Calculations

APPENDIX E

Supporting Information for Dispersion Source Parameters

APPENDIX F

Dispersion Modelling Files (provided as electronic zipped files)

APPENDIX G

Transitional Operating Conditions

APPENDIX H

ALCF Emission Increase Methodology

APPENDIX I

Lehigh Supporting Documents

APPENDIX J

In-stack Limit Comparison

APPENDIX K

Emission Rate and Maximum POI Concentration Comparison with and without ALCFs

1.0 INTRODUCTION AND FACILITY DESCRIPTION

Lehigh Hanson Materials Limited (Lehigh) operates a cement manufacturing facility located at 1370 County Rd 49, Picton, Ontario (the Facility).

The location of the Facility is presented in Figure 1 – Site Location Plan and the land use designation of the site and surrounding area is presented in Figure 2 – Land Use Zoning Designation Plan.

1.1 Purpose and Scope of ESDM Report

This Emission Summary and Dispersion Modelling (ESDM) Report was prepared to support an application for an amendment to Environmental Compliance Approval (ECA) with Limited Operational Flexibility (LOF) for air and noise under Part II.1 of the *Ontario Environmental Protection Act* (EPA) for Lehigh Hanson Materials Limited (Lehigh) cement manufacturing facility located at 1370 Highway 49, Picton, Ontario (the Facility). Lehigh is undertaking efforts to use Alternative Low Carbon Fuels (ALCFs) to supplement the energy required to make Portland Cement at their Facility. ALCFs are in use in many cement plants all over the world and represent a proven to reduce greenhouse gas emissions. The Facility currently operates under ECA Number 0073-BHGQHC, issued October 31, 2019.

Lehigh has prepared an application under Part II.1 of the Ontario Environmental Protection Act (EPA) to amend the existing ECA, to allow for a Non-Demonstration (Permanent) Project to use ALCFs at the Site, satisfying Ontario Regulation (O. Reg.) 79/15 (as amended by O. Reg. 54/21 and 824/21) (the ECA Amendment Application).

As part of the ECA Amendment Application, Lehigh is requesting approval to for the following:

- An ALCF daily throughput of up to 200 tonnes per day, which may include the following materials:
 - Construction & Demolition (C&D) Materials; including but not limited to primarily wood material with minor amounts of non-recyclable paper and plastic.
 - Industrial, Commercial, and Institutional (IC&I) Materials; including but not limited to primarily non-recyclable paper, plastic and textiles wood material, and tire fibre and fluff.
 - The combustible fraction of non-recyclable household waste (commonly referred to as Refuse Derived Fuel [RDF]).
 - Discarded treated seed.
- Installation of new conveyance and storage equipment for ALCFs at the site using enclosed containers and buildings.
- Renew the LOF condition 2.1 of ECA Number 0073-BHGQHC, which expires on July 1, 2023.

The Site will target approximately 33% thermal replacement by using mixtures of ALCFs to replace petroleum coke and coal. The above noted ALCFs would meet the following criteria to satisfy the fuel requirements of O. Reg. 79/15:

- be used as mixtures of non-recyclable and non-odorous materials;
- not be derived from or composed of any material set out in Schedule 1 of O. Reg. 79/15;

(IS) GOLDER

wholly derived from or composed of materials that are biomass, municipal waste, or a combination of both;
 and

have a high heat value of at least 10 megajoules per kilogram

The contents of this ESDM Report satisfy the requirements of s.26 of O. Reg. 419/05. In addition, guidance in the Ontario Ministry of the Environment, Conservation and Parks (the Ministry) publication "Guideline A-10: Procedure for Preparing an Emission Summary and Dispersion Modelling (ESDM) Report, Version 4.1", dated March 2018 (ESDM Procedure Document) PIBS 3614e04.1 was followed, as appropriate.

The Facility is being assessed to s.20 of O. Reg. 419/05; therefore, the Facility's assessment of compliance was performed using version 19191 of the AERMOD dispersion model and its pre-processors to demonstrate compliance with the schedule 3 standards of O. Reg. 419/05.

The information provided in this report could be used to derive proprietary information on Lehigh as well as production numbers at the facility. This information is thus considered to be a trade secret and of a proprietary nature by Lehigh. It is therefore requested that it be held in confidence and not released to anyone outside of the review procedure without prior consent of Lehigh. This request relies on Section 17 of the Ontario Freedom of Information and Protection of Individual Privacy Act.

As outlined in the Version Control section, this is the sixth version of this ESDM Report. A modification log is included in Appendix A to document future revisions to the ESDM Report.

1.2 Description of Processes and NAICS Code(s)

Lehigh manufactures cement. A quarry is located adjacent to the cement plant in which raw materials (limestone and shale) are extracted. These raw materials are transferred to the plant by truck and either fed directly to the primary crusher or stockpiled nearby the crusher (and later fed to the crusher). Once the limestone is crushed to less than eight (8) inches in diameter, it is fed to a grinder. There are mills which are used to produce various grades of cement by grinding clinker and gypsum. Cement and clinker are sent-off site by ship with a small percentage by truck.

There are also support operations at the Facility, namely: comfort heating (both natural gas and oil), ventilating and air conditioning equipment, and a welding shop in which majority (70%) of the maintenance welding occurs with the remaining welding occurring throughout the plant.

Product usages and process information are provided in detail in Appendix B – Emission Rate Calculations. Table 1 – Sources and Contaminants Identification Table contains a summary of the individual sources of emissions at the Facility.

The North American Industry Classification System (NAICS) code that best applies to the Facility is 327310 (cement manufacturing).

1.3 Description of Products and Raw Materials

The following sections describe the process flow and equipment used in the clinker and cement manufacturing process.

Raw Material Receiving

Limestone makes up the majority of the raw materials within cement manufacturing, which is quarried on site. Other raw materials include low sulfur coal (LSC), petcoke, gypsum (anhydride and crude), silica, iron, alumina, and blended additives, which are shipped to the site.

The Facility is requesting to use up to 200 tonnes per day of alternative low-carbon fuels to displace approximately 33% of LSC or petcoke to fuel the process kiln on a thermal basis.

Raw Materials Storage and Transfers

Limestone from the quarry is loaded onto trucks and travels under Highway 49 via a tunnel, where the limestone is unloaded directly into the primary crusher or unloaded for temporary storage. Once the limestone experiences primary crushing, the material is conveyed into an enclosed building to the secondary crusher.

Raw Mill

After the secondary crusher, the material is conveyed for storage or conveyed directly to the raw mills where it is blended with other additives (silica, iron, alumina and other additives), dried using the kiln exhaust and natural gas dryers, and sized to form the raw meal prior to conveyance to the kiln.

Kiln 4 and Kiln 4 Bypass

The purpose of the kiln is to convert the raw meal into clinker through a process referred to as pyroprocessing (i.e., heating the material to temperatures greater than 1,400°C). The high temperatures of the kiln cause the ingredients in the raw meal to form clinker.

Kiln 4 is a preheater style kiln equipped with an electrostatic precipitator (ESP) and currently relies on a fuel mixture of LSC, petcoke, and some natural gas. The rotation speed of the kiln is controlled to gradually move the raw materials towards the burning zone (flame end and outlet of clinker) which provides a long residence time ensuring complete combustion/calcination.

The first step in the clinker manufacturing process is to convey the raw meal from the raw meal storage to the top of the preheater tower where heat exchange between the raw meal and hot kiln gases allows for the calcination process; the liberation of carbon dioxide (CO₂) from the calcium carbonate (limestone) produces the active ingredient in the chemical process – Lime (CaO). Fuel addition located at the kiln riser utilizes approximately 25% of the thermal load requirement and is used to manage the temperatures in the pre-heat tower and concurrently the degree of calcination.

Once the raw meal completes the preheating stage, it enters the inlet of the kiln (feed end) of the sloped rotary kiln for direct firing. The fuel for the kiln, the remaining 75% of the thermal load, is introduced at the lower end (outlet of clinker) of the kiln which is equipped with a burner (flame end). This design creates a counter-current flow with the raw meal and the fuel combustion gases. As the kiln turns, the raw meal is conveyed towards the flame end and the fuel combustion gases are exhausted through the preheater through an evaporative cooling gas conditioning tower, the vertical raw mills and then to dust collection in the ESP. The fuel combustion gases in the kiln will reach temperatures in excess of 1,800°C.

To manage the volatile cycle of some compounds in the kiln, Lehigh employs a bypass stack. Under normal operating conditions, approximately 97% of the flue gases from the kiln pass through the pre-heater and raw mill and are exhausted through the ESP and Kiln 4 main stack, while the remaining 3% of the kiln flue gases goes through the bypass system (i.e., "bypassing" the preheater, raw mills and the ESP on the Kiln 4 main stack). The purpose of the bypass system is to remove volatile components (e.g., chlorine) from the kiln system as they

accumulate in a volatile cycle, changing state from gas to solid at temperatures within the kiln and pre-heat tower. The bypass utilizes a quench fan condensing the volatile components into the bypass kiln dust. The chemical reactions and physical processes under high temperatures and with a long residence time transform the raw meal into clinker. The high temperatures, long residence times and the oxidizing atmosphere in the kiln system result in the complete destruction of the organic components of the fuels (conventional/ALCF) and raw materials. The clinker formed inside the kiln retains the majority of the inorganic components of the fuels and raw materials including heavy metals. The active ingredient, lime, produced in the pre-heater tower and kiln is an inherent scrubber capturing volatile compounds and forming them into clinker compounds.

The Facility also uses a Selective Non-Catalytic Reduction (SNCR) ammonia solution injection system to reduce nitrogen oxides emissions and employs hydrated lime injection to reduce sulphur dioxide emissions from the kiln 4 stack.

The Facility uses a continuous emissions monitoring (CEM) system to monitor emissions from the main stack and bypass stack on kiln 4, including nitrogen oxides (NO_x), sulphur dioxide (SO₂), carbon monoxide (CO) and suspended particulate matter (SPM) at all times. At this time, Kiln 3 is not in operation and there is no plan to operate this kiln in the future.

Petcoke and Low Sulphur Coal Receiving and Grinding

The Facility receives petcoke and LSC via boats where it is unloaded and stored near shore. The petcoke and LSC is loaded into trucks where it is unloaded at the coal mill prior to being conveyed to Kiln 4.

ALCF Receiving and Storage

This ESDM update includes the proposed use of ALCFs at the Facility. Lehigh is proposing to use up to 200 tonnes per day of ALCFs (as identified in section 1.1 of this ESDM Report) which includes the installation of a proposed ALCF storage building and covered conveyance equipment.

ALCFs will be delivered by enclosed trucks, which would enter the proposed fuel storage building. To minimize potential for fugitive emissions from the unloading of the ALCFs once received at the Facility, material will be unloaded directly from the truck into the ALCF building.

The ALCF materials may require further size reduction to be fed as a fuel and blending to ensure consistency in the fuel feed. This is accomplished through loading the material into a de-lumper. Materials would then be fed via conveyor to the ALCF feed hopper of the fuel delivery system.

The fuel preparation and handling system will include the following:

- An in-feed drag conveyor to a de-lumper to ensure appropriate particle sizes are achieved and to blend materials.
- A drum or belt magnetic separator.
- 2) An enclosed conveyor to transfer materials to the hopper for the ALCF feeding system.
- 3) An ALCF feeding system, electronically controlled, and specifically designed to handle light and low bulk density materials.

Clinker Storage and Transfer

Once the clinker has cooled, it is conveyed to the clinker storage hall. Some of the clinker is loaded onto trucks and sent off-site as bulk clinker. The remainder is conveyed to the Cement Mill where it is milled and blended to form cement.

Cement Mills

At the Cement Mill, the clinker undergoes grinding and blending with other materials (e.g., limestone, gypsum, silica fumes, fly ash and other cement) to produce the various grades of cement.

Finished Cement

The finished cement is stored in one of several cement silos. The cement may be loaded on trucks to be sent off site or conveyed to be packaged in the Cement Packaging Area. Silo filling and unloading dust emissions will be controlled by dust collectors.

This ESDM also includes the proposed conversion of the existing clinker dome to a finished cement dome, which will be equipped with various enclosed conveyance equipment (including pneumatic conveyance) and dust collection.

1.4 Process Flow Diagram

Process flow diagrams of the processes described in Section 1.3 are provided in Figures 3a to 3f.

1.5 Operating Schedule

The Facility operates 24 hours a day, seven days a week, up to 52 weeks per year, with the main facility hours from 7 am to 7 pm. Blasting occurs two days per week at 2 pm, with two blasts occurring for 10 minutes each on blasting days.

1.6 Facility Production Limit

The Facility is requesting a production limit of 1.4 million tonnes annually of cement clinker which is based on Kiln 4 operating at 163 tonnes per hour, 24 hours per day for 365 days per year.

Additionally, Lehigh is requesting a maximum usage of 200 tonnes of ALCFs per day to fuel the kiln.

1.7 Summary of Modifications

A full list of modifications since the last ESDM (the Original ESDM), dated February 15, 2018, that was submitted with the last ECA Application in February 2018 is provided in Appendix A. The key changes since the last submission include:

- Assessments of proposed ALCFs
- Conversion of clinker dome to a cement dome (the Cement Dome Project)
- Assessment of the ammonia injection control as part of the pre-existing selective catalytic non-reactive (SNCR) system on Kiln 4 to reduce NOx emissions.
- Removal of Kiln 3 and it's associated sources

Appendix A documents all changes to the ESDM since the Original ESDM.

2.0 INITIAL IDENTIFICATION OF SOURCES AND CONTAMINANTS

2.1 Sources and Contaminants Identification Table

Table 1 – Sources and Contaminants Identification Table includes all the emission sources at the Facility. The expected contaminants emitted from each source are also identified in Table 1. Each of the identified sources has been assigned a source reference number.

(NS) GOLDER

There may be general ventilation from the Facility that only discharges uncontaminated air from the workspaces or air from the workspace that may include contaminants that come from commercial office supplies, building maintenance products or supplies and activities; these types of ventilation sources are considered to be negligible and were not identified as sources at the Facility. General ventilation located in the process area that does not vent process emissions is also considered to be negligible.

The process activities at the Facility can be separated into four main emission source groups. These include:

- Quarry Operations
- Clinker Production
- Cement Production
- Ancillary Operations

The primary compounds emitted from production are suspended particulate matter (SPM), products of combustion and metals. Emission estimates were calculated using Ministry approved methods. These include mass balance calculations, emission factor calculations, and engineering calculations. Detailed emission calculations for each source are provided in Appendix B. A detailed summary of sources and contaminants is provided in Table 1 – Sources and Contaminants Identification Table.

Source groups and potential contaminants associated with these sources are summarized in the table below.

Table III: Expected Contaminants from the Facility

Source	Activity		Expected Contaminants		
Group		Individual Sources	SPM	Metals	Combustion Products
	Drilling	Drilling	✓		√
Quarry	Blasting	Blasting	✓		
Operations	Material Transfers & Storage	■ Material transfers & storage	✓		
Clinker Production	Material Transfers	 Raw material receiving/storage Petcoke/gypsum unloading from ship Additive drop to piles Clinker drop to piles & out loading to sales Fuel drop into feed hopper 	* * * * * * * * * * * * * * * * * * *		
	Clinker Production	Kiln 4 with ESPKiln 4 by-pass with baghouseSlag dryer	✓ ✓	✓ ✓	✓ ✓

Source	Activity			Expected Contaminants		
Group		Individual Sources	SPM	Metals	Combustion Products	
	Storage &	Outdoor Storage Piles	✓			
Cement Production	Transfers	Paved and Unpaved Roads	✓			
	Cement Grinding	8 Mill stacks	√			
		■ Primary & secondary crushing	✓			
	Ancillary Operations	Maintenance (Parts Washer)		,	,	
Ancillary Operations		Welding	✓ ✓	~	√	
		■ Comfort Heating	√			
		Paved and Unpaved Roads	•			

3.0 ASSESSMENT OF THE SIGNIFICANCE OF CONTAMINANTS AND SOURCES

Contaminants and sources at the Facility were assessed for significance following the guidance outlined in the ESDM Procedure Document.

3.1 Identification of Negligible Contaminants and Sources

Contaminants that are discharged from the Facility in a negligible amounts and/or sources that discharge a contaminant in a negligible amount were excluded from further analysis. The rationale for these exclusions are provided below. Of the sources listed in Table 1 – Sources and Contaminants Identification Table, several sources have been identified as negligible. Similarly, some contaminants from the sources that are considered significant have been deemed negligible. These contaminants are listed in Appendix C – supporting information for Assessment of Negligibility.

There are two primary methods to classify sources as negligible: Table B-3A Sources of the ESDM Guidance document, and sources that are insignificant relative to total emissions.

The following sources are listed in Table B-3A of the ESDM Procedure document, thus for the purposes of this assessment are considered negligible:

- Parts washers in maintenance shop
- Small maintenance and janitorial activities
- Quality assurance and quality control fume hoods
- On-site storage tanks for fueling of on-site vehicles

The following sources were considered negligible as they have emissions in negligible amounts (<1% of the total facility emissions for specific contaminants), with the cumulative emissions from all negligible sources to be less than 5% of total facility emissions:

NSI) GOLDER

- Maintenance welding
- Comfort heating equipment
- Dust Collector associated with cement dome conversion

Additionally, the Facility operates with a Best Management Practices Plan (BMPP) and as per section 7.4 of the ESDM Procedure Document, fugitive dust emissions from roads and outdoor storage piles have been excluded from the dispersion modelling analysis.

3.2 Identification of Significant Contaminants Using an Emission Threshold

The list of negligible contaminants was identified using the Emission Threshold calculation in s.7.1.2 of the ESDM Procedure Document and can be found in Appendix C – Assessment of Negligibility. These contaminants were excluded from the dispersion modelling analysis.

As per the ESDM Procedure Document, contaminants that are emitted from a specific facility may be identified as negligible when they are below the emission thresholds that are developed using the following formula:

Emission Threshold
$$\left(\frac{g}{s}\right) = \frac{0.5 \text{ x Ministry POI Limit } \frac{\mu g}{m^3}}{Dispersion Factor \left(\frac{\mu g}{m^3} \text{ per } \frac{g}{s}\right)}$$

The dispersion factor selected for the Facility was the Ministry's rural dispersion factor of 2800 (μg/m³ per g/s emission) for a distance from source of 200 m and based on a 1-hour averaging period. This dispersion factor was developed by the Ministry using a series of conservative modelling factors for a short stack on a 6 m tall building and can be found in Table B-1 of the ESDM Procedure Document. The Facility has a mix of short and tall stacks; however, most of the non-negligible sources are located much greater than 200 m away from the nearest point of impingement (POI) locations and are either located much higher than 6 m above ground or on buildings that are much higher than 6 m. For contaminants that had Ministry POI that are not based on 1-hour averaging periods, the conversion to the appropriate averaging periods was completed using the Ministry recommended conversion factors, as documented in the Ministry *publication "Guideline A-11: Air Dispersion Modelling Guideline for Ontario, Version, 3.0"*, dated February 2017 (ADMGO) PIBS 5165e03.

Of the 92 contaminants assessed, 42 were considered negligible using the Emission Threshold calculation. The remaining 50 contaminants were carried forward into the dispersion modelling analysis and the results are presented in Table 5a and 5b. For a list of contaminants considered negligible using this method, please refer to Table C1 in Appendix C

3.3 Rationale for Assessment

For each source and contaminant that has been deemed negligible, information required to substantiate this classification, including references to Ministry guidance where applicable, is provided in Table 1 / Appendix C – Supporting Information for Assessment of Negligibility.

In accordance with s.8 of O Reg. 419/05, emission rate calculations and dispersion modelling does not have to be performed for emissions from negligible sources. The emissions of negligible contaminants are included in the emission rate calculations; however, are excluded from the dispersion modelling assessment.

4.0 OPERATING CONDITIONS, EMISSION ESTIMATING AND DATA QUALITY

4.1 Description of Normal Operating Conditions

Section 10 of O. Reg. 419/05 states that an acceptable operating condition is a scenario in which operating conditions for the Facility would result, for the relevant contaminant, in the highest concentration of the contaminant possible at the point of impingement (POI).

The maximum emission scenario for the dispersion modelling analysis includes all sources at the Facility operating simultaneously at their respective maximum rates. The following table outlines the maximum rates for each significant source of emissions as assessed herein (as indicated in the rationale column of Table 1 appended to this ESDM).

Table IV: Emission Methodology and Rate Summary

Source	Source ID(s)	Model ID(s)	Emissions Methodology	Maximum Rate			
Quarry Operations							
Material transfers		QUARRY	EF: AP-42 Ch 13.2.4 Aggregate Handling and Storage Piles	390 tonnes/hour			
Material Transfe	ers (Plant)						
Primary Crushing		VFUG4, VFUG4A	EF: AP-42 Ch 13.2.4 Aggregate Handling and Storage Piles	390 tonnes / hour			
Secondary Crushing		SECOND	EF: AP-42 Ch 11.19.2 Crushed Stone Processing and Pulverized Mineral Processing	370 tonnes / hour			
		COALSHIP	EF: AP-42 Ch 13.2.4 Aggregate Handling and Storage Piles	1 083 tonnes / hour LSC unloading 2 600 tonnes / hour Coke unloading			
		COALTD	EF: AP-42 Ch 13.2.4 Aggregate Handling and Storage Piles	29 tonnes / hour LSC outloading 29 tonnes / hour Petcoke outloading			
		GYPSHIP	EF: AP-42 Ch 13.2.4 Aggregate Handling and Storage Piles	2 800 tonnes / hour anhydride gypsum unloading 2 800 tonnes / hour crude gypsum unloading			
Raw Material Transfers		GYPSUMTD	EF: AP-42 Ch 13.2.4 Aggregate Handling and Storage Piles	65 tonnes / hour Anhydride gypsum outloading 65 tonnes / hour crude gypsum outloading			
		EF: AP-42 Ch 13.2.4 Aggregate Handling and Storage Piles	80 tonnes / hour silica drop to pile 80 tonnes / hour iron drop to pile 80 tonnes / hour alumina drop to pile 200 tonnes / hour additives drop to storage				
		CKD	EF: AP-42 Ch 13.2.4 Aggregate Handling and Storage Piles	3 tonnes / hour CKD drop to pile 21 tonnes / hour CKD outloading			
		VFUG5	EF: AP-42 Ch 13.2.4 Aggregate Handling and Storage Piles	17 tonnes / hour fuel drop to hopper			

Source	Source ID(s)	Model ID(s)	Emissions Methodology	Maximum Rate	
Kilns					
			EF: AP-42 Ch. 11.6 Portland Cement Manufacturing		
Kiln 4 stack with ESP; Loesche Mills		KILN4	KILN4 ST: 2021 Source Testing Program, Wood November 2021		163 tonnes/hour of clinker 190 tonnes/hour of raw meal
			*ALCF Methodology described in Appendix H		
Kiln 4 Cooler with baghouse		KILN4_C	EF: AP-42 Ch. 11.6 Portland Cement Manufacturing	163 tonnes/hour of clinker	
			EF: ESDM Procedure Document Table C-2		
Kiln 4 Bypass Stack with		KILN4 BP	EF: AP-42 Ch. 11.6 Portland Cement Manufacturing	20 mg/m ³ for largest baghouse	
baghouse	KILIN4_		ST: 2021 Source Testing Program, Wood November 2021	163 tonnes/hour of clinker	
			*ALCF Methodology described in Appendix H		
Baghouses					
Raw and Cement Mills (#1 to #8)		SRC3, SRC5 to SRC8, and SRC68	EF: AP-42 Ch. 11.6 Portland Cement Manufacturing	45 to 80 tonne/hour of raw meal or clinker	
Primary and Secondary Crushing		·	EF: AP-42 Ch. 11.6 Portland Cement Manufacturing	350 to 390 tonnes/hour	
Various Baghouses		to SRC48, SRC51, SRC55, SRC58, SRC61 to SRC67, SRCID69	EF: ESDM Procedure Document Table C-2	20 mg/m3 for largest baghouse and 10 mg/m3 outlet loading concentration for the remaining	
Clinker Transfers			EF: AP-42 Ch.11.19.2 Crushed Stone Processing and Pulverized Mineral Processing	9 tonne / hour clinker transfer 163 tonne / hour clinker transfer 163 tonne / hour clinker transfer 188 tonne / hour clinker transfer	

Notes: EF= emission factor, ST = Source Testing

The averaging periods for the maximum rates provided in the above table were selected based on the averaging periods for the Ministry POI Limits of the significant contaminants emitted from each source. The use of the above maximum rates to estimate emission rates of contaminants for each emission source results in an operating condition which satisfies section 10 of O. Reg. 419/05. More details on the maximum operating rates are provided in Appendix B – Emission Rate Calculations.

4.2 Description of ALCF Emission Rate Estimates

The emissions from the use of ALCFs have the potential to be emitted from the Kiln 4 main stack and the Kiln 4 Bypass stack. These stacks emit process combustion air from the kiln. All material handling activities related to ALCFs will occur in an enclosed building with no expectation of emissions.

A detailed explanation of how Kiln 4 and Kiln 4 Bypass emissions rates with the use of ALCFs have been assessed is presented in Appendix H – ACLF Emission Increase Methodology and summarized below.

With the use of ALCFs, the two types of contaminant groups that are anticipated to have the potential for a non-negligible change are the target reduction of non-biogenic CO₂ and the potential increase of trace inorganic metals and chlorinated compounds as they can have higher concentrations in the ALCFs when compared to LSC or petcoke.

The potential increases in emissions of trace organic metals and chlorinated compounds emissions from the use of ALCFs were estimated by comparing the composition of the ALCFs with LSC and petcoke (i.e., assessing the changes in contaminant inputs into the kiln). This was carried out so that a mass balance increase in emission rate could be estimated for the contaminants that have greater concentrations in the ALCFs than LSC and petcoke.

Lab analysis for these contaminants was carried out on the LSC, petcoke, and the four ALCFs under consideration for use in the process kiln. Of the 39 contaminants that were analyzed, 16 contaminants were found to have higher concentrations in LSC or petcoke and were excluded from further assessment. The 23 remaining contaminants that were found to have higher concentrations in one of the four ALCFs were assessed and an estimated increase in emission rate was applied to the Kiln 4 Bypass Stack. Please refer to Appendix H to see how the percentage increase based on mass balance was calculated and please refer to Appendix B (Source ID 4 – Kilns) to see how the emission rate was scaled.

Several metals analyzed are considered non-volatile or semi-volatile and will not be emitted from the kiln (KILN4) as a result of fuel combustion. This is due to the expectation that these contaminants will condense and re-circulate in the pre-heater and kiln and eventually be contained in the clinker matrix as per section 1.3.4.7 of the EU BAT (2013)¹ and in consultation with Lehigh process engineers. The six contaminants that would not be bound in the clinker matrix had an estimated increase in emission rate applied to them from the kiln. A complete description of the methods used to estimate the increased emission rates from using ALCFs to fuel the kiln is provided in Appendix H. A summary of the number of contaminants from the ALCFs and how they have been assessed is presented in the table below.

WSD GOLDER

11

¹ Frauke Schorcht et al., Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide, 2013

Table V: ALCF Contaminant Screening Summary

Contaminant Category	Number of Contaminants	Contaminants
Contaminants from ALCFs assessed	39	Trace Metals/inorganics
Contaminants from ALCFs with higher concentrations in LSC or petcoke (screened out from the assessment)	16	Aluminum, beryllium, boron, fluorine, lithium, molybdenum, nickel, potassium, selenium, silicon dioxide, strontium, sulfur, thallium, uranium, vanadium, and yttrium
Contaminants from ALCFs with higher concentrations in one of the four ALCFs	23	Antimony, arsenic, barium, bismuth, cadmium, calcium, chlorine, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, phosphorous, silicon, silver, sodium, tin, titanium, tungsten and zinc
Contaminants from ALCFs with increased emission rates applied to the Kiln 4 bypass stack	23	Antimony, arsenic, barium, bismuth, cadmium, calcium, chlorine, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, phosphorous, silicon, silver, sodium, tin, titanium, tungsten and zinc
Contaminants from ALCFs with increased emission rates applied to Kiln 4**	6	Chlorine, cobalt, mercury, phosphorous, tin and silicon

Notes: ** 17 contaminants were screened out from Kiln 4 due to them being non-volatile, refractory or semi-volatile. Please refer to appendix H for more information.

4.3 Description of Transitional Operating Conditions

An assessment of the transitional operating conditions (TOC) in accordance with the requirements of s.10 of O. Reg. 419/05 has been considered for the Facility. The assessment was limited to estimating emissions of nitrogen oxides, sulphur dioxides, carbon monoxide and SPM from the Facility's continuous emissions monitoring system (CEMS) on the KILN4 and KILN4_BP sources for the 2018 (SPM) and 2021 years (NOx, SO₂, CO).

During start-up and shutdown of Kiln 4 and supporting mills, the Facility can experience spikes in NOx, SO₂, CO and SPM. The Facility will not use ALCFs to fuel the kiln during start-up or shutdown.

A summary of the CEMS data used to represent the maximum operating scenario during the TOC are included in Appendix G.

4.4 Explanation of the Methods Used to Calculate Emission Rates

The maximum emission rates for each significant contaminant emitted from the significant sources were estimated in accordance with requirements of s.11 of O.Reg.419/05 and the ESDM Procedure Document. These rates and methods are summarized in Table 2a and Table 2b appended with this report.

4.5 Sample Calculations

Sample calculations are presented in Appendix B – Emission Rate Calculations. All the emission estimation methods are acceptable methods as outlined in the ESDM Procedure Document. Where the emission rate calculation relies on data that is not readily available, the data are provided in Appendix D – Supporting Information for Emission Rate Calculations. Additionally, Appendix H provides the methods for estimating emissions from the use ALCFs.

The basic equation for calculating emissions is:

$$R = SE * E * (1 - C)$$

Where:

R = estimated mass emission rate in the specified unit

SE = source extent (e.g. production rate, exposed area, distance travelled)

E = uncontrolled emission factor in the specified particle range (i.e. mass of uncontrolled emission per unit of source extent)

c = fractional efficiency of control

4.6 Assessment of Data Quality

As outlined in the ESDM Guidance document, each emission estimate for each significant contaminant must be supported by an assessment of the data quality used to assess emissions.

For each contaminant, the emission rate was estimated, and the data quality of the estimate is documented in Table 2a and Table 2b appended with this report.

4.7 Conservatism of Emission Estimates and Operating Condition

The following assumptions were included in the development of the emission estimates and operating condition for the Facility:

- The highest emission rate that each source is capable of (i.e., maximum usage rates or throughputs) was used to characterize the emissions.
- All sources are assumed to be operating simultaneously at the corresponding maximum emission rate for the averaging period.
- All fuel-fired combustion equipment (i.e., comfort heating and emergency power) emission rates were determined using the highest emission factor, combined with the maximum thermal heat input or engine rating for each piece of equipment.
- The mass balance approach to estimating emissions from the use of ALCFs was very conservative for the following reasons:
 - The maximum contaminant concentration from any of the ALCFs was used to represent any ALCF fuel.
 - For the 23 contaminants that were assessed to be higher in ALCFs in comparison to the displaced LSC and petcoke, the emission rates from Kiln 4 and Kiln 4 Bypass were scaled linearly with the percent increase in concentration of the contaminant in the ACLFs when compared to petcoke or LSC. This is very conservative as it assumes that the emissions from the preheating and calcination of the raw meal (i.e. raw materials that include limestone) are not a significant source of the contaminants, when in reality the raw meal would be a significant source of the contaminants (e.g., calcium oxide and iron) from a mass balance perspective.

Emission rates for three (iron, sodium and zinc) of the 23 contaminants from the Kiln 4 Bypass Stack were estimated to have increases resulting in emission rates greater than the SPM emission rate as a result of using ALCFs as a fuel. It is not possible for the speciated metal emissions to be greater than SPM; and therefore, emission rates for these contaminants were set equal to the emission rate of SPM. Setting these contaminants equal to the SPM emission rate is very conservative as it assumes that 100% of the SPM emissions are made up of each contaminant when in reality it would be a blend of the main clinker ingredients (clinker and silicates).

- Three (bismuth, magnesium and tungsten) of the 23 contaminants from the Kiln 4 Bypass Stack were not assessed prior to the use of ALCFs and therefore an increase in emission rates could not be estimated. As a result, emission rates for these contaminants were set equal to the emission rate of SPM. Similarly to above, this is very conservative as it assumes that 100% of the SPM emissions are made up of each contaminant
- Silicon was not analysed in the LSC or petcoke and therefore an increase in emission rate could not be estimated. As a result, the emission rate for silicon from Kiln 4 and the Kiln 4 Bypass Stack was set equal to the emission rate of SPM from these sources. Similarly to above, This is conservative as it assumes that 100% of the SPM emissions are made up of silicon.

Based on the conservative assumptions summarized above and detailed in Appendix B – Emission Rate Calculations and Appendix H – ALCF Emission Increase Methodology, the emission rates listed in Table 2a and 2b are not likely to be an underestimate of the actual emission rates.

5.0 SOURCE SUMMARY TABLE AND SITE PLAN

5.1 Source Summary Table

The emission rates for each source of significant contaminants are documented in Table 2a – Source Summary Table (Normal) and Table 2b – Source Summary Table (TOC) in accordance with requirements of sub paragraph 8 of s.26(1) of O. Reg. 419/05.

5.2 Site Plan

The following tables summarizes the required details to be included on the Figures.

Table VI: Required Information on Figures Summary

Criteria	Required Information	Figure		
Property Boundary and Coordinates	 the property boundary the co-ordinates for sufficient points on the property boundary to accurately describe the boundary 	Figure 1 – Site Location Plan Figure 4 – Emissions Source and Exhaust Location Plan Figure 5 – Dispersion Modelling Plan		
Significant Sources	 each significant source of significant contaminants (i.e., all stacks) 	Figure 4 – Emissions Source and Exhaust Location Plan Figure 5 – Dispersion Modelling Plan		
Structures on the Property	 the location, dimensions and elevation of every structure on the property 	Figure 4 – Dispersion Modelling Plan		
On-site Sensitive Receptors	 an indication of which structures contain sensitive receptors (if applicable) 	Not Applicable		

Where reasonable, the location, dimensions, and elevations of only those on-site structures that may affect the dispersion of emissions from significant sources are included.

For ease of reference, each of the sources is labelled with the source reference number in Table 2a and 2b.

The proposed layout of the ALCF buildings and conveyance equipment is indicated on Figure 4 and 5, and the preliminary plot plan of the ALCF equipment is included in Appendix I.

6.0 DISPERSION MODELLING

Dispersion modelling was conducted in accordance with the Ministry *publication "Guideline A-11: Air Dispersion Modelling Guideline for Ontario, Version, 3.0"*, dated February 2017 (ADMGO) PIBS 5165e03.

The Facility is being assessed to s.20 of O. Reg. 419/05; therefore, the modelled impact to POI criteria are required to be assessed using an advanced dispersion model such as AERMOD.

The AERMOD modelling system is made up of the AERMOD dispersion model, the AERMET meteorological pre-processor, the AERMAP terrain pre-processor and the BPIP building downwash pre-processor. The AERMET pre-processor was not used in this assessment; however, the most current version of the appropriate pre-processed Ministry meteorological dataset was used.

The following is a list of the model and pre-processors which were used in this assessment, along with the version numbers of each:

- AERMOD dispersion model (v. 19191)
- AERMAP surface preprocessor (v. v. 18081)
- BPIP building downwash pre-processor (v.04272)

The dispersion modelling was conducted in accordance with the ADMGO and the Ministry technical bulletin *Methodology for Modelling Assessments with 10-Minute Average Standards and Guidelines under O. Reg. 419/05*, dated April 2008 (Ministry Technical Bulletin). A general description of the input data used in the dispersion model is provided below and summarized in Table 3.

The emission rates used in the dispersion model meet the requirements of s.11(1)1 of O. Reg. 419/05, which requires that the emission rate used in the dispersion model be at least as high as the maximum emission rate that the source of contaminant is reasonably capable of for the relevant contaminant. These emission rates are further described in Appendix B – Emission Rate Calculations.

6.1 Dispersion Modelling Input Summary Table

A description of the way in which the approved dispersion model was performed is included as Table 3 – Dispersion Modelling Input Summary Table. This table meets both the requirements of s.26(1)11 and sections 8-17 of O. Reg. 419/05 and follows the format provided in the ESDM Procedure Document.

6.1.1 Dispersion Modelling Source Parameters

The source parameter data required for each source was characterized according to the procedures provided in ADMGO. Furthermore, the dispersion modelling input parameters are summarized in Table 4 – Dispersion Modelling Source Summary Table.

There are 47 point sources, 18 volume sources, and 1 open pit source, as presented in Figure 5 – Dispersion Modelling Plan.

(\S|) GOLDER

Material handling sources were modeled as volume sources, with initial lateral dimensions, initial vertical dimensions and release heights estimated based on guidance in the National Stone, Sand and Gravel Association document "Modeling Fugitive Dust Sources" (dated 2004) (NSSGA document). The data used to estimate the volume source parameters are provided in Appendix E.

Material transfers occurring within the quarry were modelled as an open pit source. The area of the open pit source was determined by a placing a rectangle of best fit with an equivalent surface area over the pit footprint. The pit depth was provided by Lehigh.

6.2 Land Use Zoning Designation Plan

The land use designation of the site and surrounding area is presented in Figure 2 – Land Use Zoning Designation Plan.

6.3 Coordinate System

The Universal Transverse Mercator (UTM) coordinate system, as per Section 5.2.2 of the ADMGO, was used to specify model object sources, buildings and receptors. All coordinates were defined in the North American Datum of 1983 (NAD83).

6.4 Meteorology and Surrounding Land Use

Sub paragraph 10 of s.26(1) of O.Reg.419/05 requires a description of the local land use conditions if meteorological data, as described in paragraph 2 of s.13(I) of O.Reg.419/05, was used. In this assessment, the AERMOD model was run using Ministry provided site-specific meteorology in accordance with paragraph 3 of s.13(1) of O.Reg.419/05.

6.5 Terrain

Terrain data used in this assessment was obtained from Ministry and include the following:

cdem_dem_031C

6.6 Receptors

Receptors were chosen based on recommendations provided in Section 7.1 of the ADMGO, which is in accordance with s.14 of O.Reg.419/05. Specifically, a nested receptor grid, centered around the outer edges of all the sources, was placed as follows:

- a) 20 m spacing, within an area of 200 m by 200 m
- b) 50 m spacing, within an area surrounding the area described in (a) with a boundary at 300 m by 300 m outside the boundary of the area described in (a)
- c) 100 m spacing, within an area surrounding the area described in (b) with a boundary at 800 m by 800 m outside the boundary of the area described in (a)
- d) 200 m spacing, within an area surrounding the area described in (c) with a boundary at 1,800 m by 1,800 m outside the boundary of the area described in (a)
- e) 500 m spacing, within an area surrounding the area described in (d) with a boundary at 4,800 m by 4,800 m outside the boundary of the area described in (a)

(\S|) GOLDER

In addition to using the nested receptor grid, receptors were also placed every 10 m along the property line in sections of the property line that are within 200 m of an emission source and every 100 m in sections of the property line that are greater than 200 m from an emission source. Only receptors located outside of the property line were considered. The area of modeling coverage is illustrated on Figure 9 – Dispersion Modelling Receptors and POI Locations.

6.7 Building Downwash

Building wake effects were considered in this assessment using the U.S. EPAs Building Profile Input Program (BPIP-PRIME), another pre-processor to AERMOD. The inputs into this pre-processor include the coordinates and heights of the buildings and stacks. The output data from BPIP is used in the AERMOD building wake effect calculations.

See Figure 5– Dispersion Modelling Plan for an illustration of the buildings which were considered in the BPIP exercise for this assessment. The BPIP input file is provided in Appendix F (Dispersion Modelling Files).

6.8 Averaging Periods and Conversions

Section 20 of O. Reg. 419/05 applies to this Facility. Many of these standards and guidelines are based on 1-hour and 24-hour averaging times, which are averaging times that are easily provided by AERMOD. In cases where a standard and/or guideline has an averaging period that AERMOD is not designed to predict (e.g. ½-hr or 30-day), a conversion to the appropriate averaging period was completed using the Ministry recommended conversion factors, as documented in the ADMGO.

6.9 Dispersion Modelling Options

The options used in the AERMOD dispersion model are summarized in the table below.

Table VII: AERMOD Modelling Options

Modelling Parameter Description		Used in the Assessment?	
DFAULT	Specifies that regulatory default options will be used	Yes	
CONC	Specifies that concentration values will be calculated	Yes	
AVERTIME	Time averaging periods calculated	1-hr, 24-hr, Annual	
EMISFACT WSPEED	Specifies the use of variable emission rates based on wind speed	Yes, for material handling	

6.10 Special Modelling Considerations

The SPM and crystalline silica emission rates from the active area (i.e. material transfer) were calculated using the maximum daily wind speed, as shown in Appendix B, but were modelled using variable emissions by wind speed. This allows for the use of the actual wind speeds in the meteorological data file to be used for the emission rates and avoids over-conservatism in the calculation and modelling of the emissions from material handling. This provides a more representative modelling of the emissions at the Facility.

The emission rate fractions within each wind class are relative to the maximum wind speed of 17 metres per second (m/s) obtained from the Ministry site-specific meteorology for the Facility. The table below outlines the fraction of the maximum emission rate per wind speed classes and the corresponding drop equation emission factors.

Table VIII: Wind Class and Emission Rate Fractions

Wind Speed Classes (m/s)	1.54	3.09	5.14	8.23	10.8	17
Emission Rate Fraction	0.04	0.11	0.21	0.39	0.55	1.0

6.10.1 Shoreline Fumigation

Since the Facility is on the Bay of Quinte and in proximity to Lake Ontario, the Ministry has requested an investigation into the possible affects of shoreline fumigation on the emissions from the Facility per Section 4.5.3 of the ADMGO. The Lake Ontario shoreline is over 10 km away from the KILN4 and KILN4_BP stacks; therefore, no impact from a thermal internal boundary layer is expected and an alternative model was not required.

6.11 Dispersion Modelling Input and Output Files

Electronic copies of all input and output files are provided in Appendix F (as a zip file). Meteorological anomalies were removed as per Section 6.5 of the ADMGO.

For the compounds that were not screened for negligibility as described in section 3.2, a conservative unit run screening model was completed for the compounds that are only emitted from KILN4 and KILN4_BP. The results of the assessment are presented in Table E.2 in Appendix E. This approach is further described below in section 6.11.1.

6.11.1 Unit Run Model Screening

For compounds that were emitted only from KILN4 and KILN4_BP, a unit run model was completed with an emission rate of 1 g/s from each stack. All contaminants with the exception to the contaminant specific models were screened using this approach. The results from the unit run model yield source specific dispersion factors, and for each contaminant, the POI was estimated by summing the product of the emission rate from each source by each source specific dispersion factor. This is a conservative approach as it assumes that the maximum ground level concentration from each source will occur at the same time and place for each of the sources in the unit run.

Of the 50 contaminants that were not screened as negligible as described in section 3.2, 39 contaminants were assessed as below their POI using this screening method. The contaminants that were modelled and assessed with the Unit Run are indicated in Table 5a under the 'Model Run Name' column.

6.11.2 Contaminant Specific Models

The following 11 compounds were modelled individually.

- 1) SPM
- 2) Calcium Oxide
- 3) Nitrogen Oxides
- 4) Sulphur Dioxide
- 5) Carbon Monoxide
- 6) Hydrogen Chloride
- 7) Crystalline Silica

(NS) GOLDER

- 8) Dioxins and Furans (TEQ)
- 9) Sulphur Trioxide
- 10) Carbon dioxide
- 11) Iron

6.12 Consideration of New SO2 Standard

As discussed in the meeting between the Ministry, Lehigh and Golder Associates Ltd. (Golder) on May 11, 2022, Lehigh is currently trialing the following as part of sulphur dioxide (SO₂) abatement activities from the Facility:

- the effectiveness of lime injection in the Kiln 4 exhaust flue; and
- modifying the quarry extraction to trial limestone rock that is lower in sulphur compounds.

The trial is now complete and the assessment of the effectiveness of the trial is underway. Lehigh anticipates that they will be able to report to the Ministry in late Q4/early Q1 of 2023 on whether the lime injection and the modified quarry plan is sufficient to reduce emissions from the Kiln 4 and Kiln 4 Bypass stacks to levels that result in compliance with incoming 2023 standard SO₂ of 100 µg/m³ on a 1-hour basis and 10 µg/m³ on an annual basis.

7.0 EMISSION SUMMARY TABLE

7.1 Emission Summary Table

A POI concentration for each significant contaminant emitted from the Facility was calculated based on the emission rates listed in Table 2a – Source Summary Table (Normal) and Table 2b – Source Summary Table (TOC) and the output from the dispersion model. The results are presented in Table 5a – Emission Summary Table (Normal) and Table 5b – Emission Summary Table (TOC)

The POI concentrations listed in Table 5a and 5b were compared against the Ministry POI Limits. At 48%, crystalline silica has the highest concentration relative to the corresponding Ministry POI Limit during normal operations.

For the TOC scenario, nitrogen oxides has the highest emission relative to its corresponding 1-hour Ministry POI Limit at 68%.

7.2 Emission Summary Table Comparison with and without ALCFs

As described in section 4.2, the addition of ALCFs as a source of fuel for the process kiln potentially increases emissions of trace inorganic metals and chlorinated compounds from the kiln 4 main stack and kiln 4 bypass stack. These potential increases have been estimated and the results are presented in Table I, showing the Facility is in compliance for all contaminants. Table K1 in Appendix K compares the total facility emission rate, maximum POI concentration, and percentage of Ministry POI limit with and without the use of ALCFs. Despite the conservatisms in section 4.7, the increase in maximum POI concentrations and percentage of Ministry POI limits are not significant and are below any levels of concern.

7.3 Assessment of Contaminants with no Ministry POI Limits

Sub paragraph 14 subsection viii of s.26(1) O. Reg. 419/05 requires an indication of the likelihood, nature and location of any adverse effect if the contaminant is not listed in any of Schedules 1, 2 and 3.

(NS) GOLDER

Contaminants released by the Facility that do not have Benchmark 1 standards or guidelines in the ACB List are considered to be 'Contaminants with No Ministry POI Limits'. Where applicable, predicted POI concentrations for Contaminants with No Ministry POI Limits were screened against the Benchmark 2 screening levels in the ACB List or the *de minimus* limit. For Contaminants with No Ministry POI Limits whose predicted POI concentrations were found to be above the Benchmark 2 screening level or the *de minimus* limit a "Supporting Information for a Maximum Ground Level Concentration Acceptability Request for Compounds with no Ministry POI Limit Supplement to Application for Approval, EPA s.9" Form was submitted with the ECA Application in February 2018. These are listed below with their performance limits:

Contaminant	Performance Limit [ug/m3]
Ammonium	1.45E+01
Chloride	5.18E+00
Nitrate	6.20E-01
Potassium	2.42E+00
Sodium	5.39E+00
Sulfate	2.36E+00

7.4 Assessment of Contaminants with Annual Standards

Concentrations of contaminants with annual standards were also compared to the daily and annual assessment values in accordance with the Ministry Technical Bulletin - Methodology For Using "Assessment Values" For Contaminants With Annual Air Standards under O. Reg. 419/05 dated March 2017. The predicted concentrations were found to be less than the Assessment Values for all relevant contaminants.

7.5 Assessment of Contaminants with In-Stack Emission Limits

As discussed in the meeting between the Ministry, Lehigh and Golder on May 11th, 2022, the Ministry has requested a table that compares the current in-stack concentrations of contaminants against the in-stack emission limits for cement and lime kilns from Table 2 of the Ministry Guideline A-7: Air Pollution Control, Design and Operation Guidelines for Municipal Waste Thermal. This table is presented in Appendix J – In-stack Limit Comparison.

7.6 Summary of Assessment

To simplify the presentation of the results and to focus the report on the assessment of compliance, the contaminants have been categorized, as follows:

Contaminant Category	Number of Contaminants in this ESDM
Significant Contaminants	
Number of contaminants assessed	92
Number of contaminants screened out using the Emission threshold, documented in Appendix C	42
Number of contaminants below current Ministry POI Limits or Performance Limits in current ECA	50

8.0 CONCLUSIONS

This ESDM Report was prepared in accordance with s.26 of O. Reg. 419/05. In addition, guidance in the ESDM Procedure Document was followed, as appropriate.

Section 20 of O. Reg. 419/05 was used to assess Facility compliance using the AERMOD dispersion model.

All the emission rates listed in Table 2a – Source Summary Table (Normal) and Table 2b – Source Summary Table (TOC) correspond to the operating scenario which results in the maximum POI concentration from the site, including the potential increase in emissions from the use of ALCFs to fuel the process kiln. For this reason and conservatisms discussed in s.4.7, the emission rates listed in Table 2a and Table 2b are not likely to be an underestimate of the actual emission rates.

A POI concentration for each significant contaminant emitted from the Facility was calculated based on the calculated emission rates and the output from the dispersion model. The results are presented in Table 5a – Emission Summary Table (Normal) and Table 5b – Emission Summary Table (TOC).

The POI concentrations in the Emission Summary Table were compared against the applicable s.20 standards and guidelines listed as Benchmark 1 in the *Air Contaminants Benchmark (ACB) List*, dated April 2018. At 48%, crystalline silica has the highest predicted POI concentration relative to the corresponding Ministry POI Limit.

For the TOC scenario, nitrogen oxides has the highest emission relative to its corresponding 1-hour Ministry POI Limit at 68%.

Contaminants released by the Facility that do not have Benchmark 1 standards or guidelines in the ACB List are considered to be 'Contaminants with No Ministry POI Limits'. Where applicable, predicted POI concentrations for Contaminants with No Ministry POI Limits were screened against the Benchmark 2 screening levels in the ACB List or the *de minimus* limit. For Contaminants with No Ministry POI Limits whose predicted POI concentrations were found to be above the Benchmark 2 screening level or the *de minimus* limit a "Supporting Information for a Maximum Ground Level Concentration Acceptability Request for Compounds with no Ministry POI Limit Supplement to Application for Approval, EPA s.9" Form was submitted with the ECA Application in February 2018.

It is assumed that the conservative emission rates, when combined with the conservative operating conditions and conservative dispersion modelling assumptions, are not likely to under predict the concentrations at a POI. Therefore, this assessment demonstrates that the Facility can operate in compliance with s.20 of O. Reg. 419/05.

9.0 LIMITATIONS OF REPORT

9.1 Standard of Care

Golder Associates Ltd., member of WSP, has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practicing under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

9.2 Basis and Use of the Report

This ESDM Report was prepared for the exclusive use of Lehigh and once finalized, is intended to fulfil Ministry data requirements to support the Facility's ECA Amendment Application. This ESDM Report cannot account for changes in Facility conditions and operational practices completed after it has been finalized and submitted to the Ministry.

The information, recommendations and opinions expressed in this report are for the sole benefit of Lehigh, subject to the limitations and purposes described herein. Use of or reliance on this report by others is prohibited and is without responsibility to Golder Associates Ltd. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder Associates Ltd. are considered its professional work product and shall remain the copyright property of Golder Associates Ltd. If Lehigh gives, lend, sell, or otherwise make available the report or any portion thereof to any other party, it does so at its own risk and liability. Lehigh acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore Lehigh cannot rely upon the electronic media versions of Golder Associates Ltd.'s report or other work products.

When evaluating the Facility and developing this report, Golder Associates Ltd. has relied on information provided by Lehigh, the regulatory authorities, and others. Golder Associates Ltd. has acted in good faith and accepts no responsibility for any deficiencies, misstatements, or inaccuracies contained in this report resulting from omissions, misinterpretations or falsifications by those who provided Golder Associates Ltd. with information.

While ensuring that the report was prepared in general conformance with regulatory and guideline requirements, Golder Associates Ltd. cannot guarantee that it will be accepted in its entirety by the Ministry or other regulatory body.

Physical sampling of atmospheric emission sources was not completed as part of the scope of work.

Signature Page

Golder Associates Ltd.

Jeff Zywicki, B.Sc.Eng Air Quality Specialist Jamie McEvoy, P.Eng Senior Air Quality Engineer

LL/JJZ/JDM/ca

https://golderassociates.sharepoint.com/sites/150044e/lehighlowcarbonfuelsecaontario/shared documents/draft eca application (internal master)/att 4 - esdm report/2148080301-r-rev0-lehigh alcf esdmr-nov2022_public.docx

Table 1
Sources and Contaminants Identification Table

				rces and Contaminants Identificat	ion Table			
			Source Information			Significant	Modelled	5.0
Source ID	Model Source ID	Source Costing Category	Source Name	General Location	Expected Contaminants	(Yes or No)?	(Yes or No)?	Rationale
Quarry Operat	ons							
Q1	DRILL	Previously Reviewed	Blasting - Hole Drilling	Quarry	SPM, crystalline silica	Yes	No	Not required as drilling and blasting are regulated under the Aggregate
Q2	BLAST	Previously Reviewed	Blasting	Quarry	SPM, crystalline silica, CO, NO2, SO2	Yes	No	Resources Act (O. Reg 244/97)
Q3	_	Previously Reviewed	Quarry storage piles	Quarry	SPM, crystalline silica	No	No	Wind Erosion was not considered as BMPs are established to control fugitive dust emissions associated with material handling, as per Section 7.4.1 of the ESDM procedure Document.
Q4	_	Previously Reviewed	Quarry unpaved roads	Quarry	SPM, crystalline silica	No	No	Roads were not considered as BMPs are established to control fugitive dust emissions associated with material handling, as per Section 7.4.1 of the ESDM procedure Document.
Q5	QUARRY	Previously Reviewed	Material transfers	Quarry	SPM, crystalline silica	Yes	Yes	N/A
Material Trans								
1-1	VFUG4	Previously Reviewed	Haul Truck dump into Primary Crusher	Primary Crushing	SPM, crystalline silica	Yes	Yes	N/A
1-2	VFUG4A	Previously Reviewed	S-2 to Crushed Limestone Pile	Primary Crushing	SPM, crystalline silica	Yes	Yes	N/A
2	SECOND	Previously Reviewed	Secondary Crusher	Secondary Crushing	SPM, crystalline silica	Yes	Yes	N/A
3-1	COALSHIP	Previously Reviewed	LSC and coke unloading from ship	Coal Storage Area	SPM, crystalline silica	Yes	Yes	N/A
3-2	COALTD	Previously Reviewed	LSC and coke shore pile outloading	Coal Storage Area	SPM, crystalline silica	Yes	Yes	N/A
3-3	GYPSHIP	Previously Reviewed	Anhydride and crude gypsum unloading from ship	Gypsum Storage Area	SPM, crystalline silica	Yes	Yes	N/A
3-4	GYPSUMTD	Previously Reviewed	Anhydride and crude gypsum shore pile outloading	Gypsum Storage Area	SPM, crystalline silica	Yes	Yes	N/A
3-5	MISCDROP	Previously Reviewed	Silica, iron, and alumina additive drop to pile and drop to storage hall	Additives Storage Area	SPM, crystalline silica	Yes	Yes	N/A
3-6	CKD	Previously Reviewed	CKD drop to pile and outloading to sales	CKD Storage Area	SPM, crystalline silica	Yes	Yes	N/A
3-7	VFUG5	Previously Reviewed	Fuel drop into feed hopper	Coal Mill - Kiln 4	SPM, crystalline Silica	Yes	Yes	N/A
Kilns								
4-1	KILN3	Decommissioned	Kiln 3 Stack with baghouse	Kiln 3	SPM, Carbon Monoxide, Nitrogen Oxides, Ammonia, Sulfur Oxides, Carbon Dioxide, Metals, Inorganics and Organics, and Dioxins and Furans	No	No	Kiln 3 no longer operational at the Facility.
4-2	KILN4	Previously Reviewed (source requiring review)* Use of alternative low-carbon fuels (ALCFs) not previously reviewed	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	Kiln 4	SPM, Carbon Monoxide, Nitrogen Oxides, Ammonia, Sulfur Oxides, Carbon Dioxide, Metals, Inorganics and Organics, and Dioxins and Furans	Yes	Yes	N/A
4-3	KILN3_C	Decommissioned	Kiln 3 Cooler with baghouse	Kiln 3	SPM, crystalline silica	No	No	Kiln 3 no longer operational at the Facility.
4-4	KILN4_C	Previously Reviewed	Kiln 4 Cooler with baghouse	Kiln 4	SPM, crystalline silica	Yes	Yes	N/A
4-5	KILN4_BP	Previously Reviewed (source requiring review)* Use of alternative low-carbon fuels (ALCFs) not previously reviewed		Kiln 4	SPM, Carbon Monoxide, Nitrogen Oxides, Ammonia, Sulfur Oxides, Carbon Dioxide, Metals, Inorganics and Organics, and Dioxins and Furans	Yes	Yes	N/A

Table 1
Sources and Contaminants Identification Table

				es and Contaminants Identification	Table			
			Source Information			Significant	Modelled	
Source ID	Model Source ID	Source Costing Category	Source Name	General Location	Expected Contaminants	(Yes or No)?	(Yes or No)?	Rationale
Cource ID	Model Gource ID	Source Costing Category	Source Name	General Eccation		(103 01 110):	(103 01 110).	
Baghouses								
5-1	SRCID3	Previously Reviewed	#1 Mill Stack with Baghouse	Raw Mill for Kiln 4	SPM, crystalline silica	Yes	Yes	N/A
5-2	SRCID4	Previously Reviewed	#2 Mill Stack with Baghouse	Grinding Mill - Slag	SPM, crystalline silica	Yes	Yes	N/A
5-3	SRCID5	Previously Reviewed	#3 Mill Stack with Baghouse	Cement Mill	SPM, crystalline silica	Yes	Yes	N/A
5-4	SRCID6	Previously Reviewed	#4 Mill Stack with Baghouse	Cement Mill	SPM, crystalline silica	Yes	Yes	N/A
5-5	SRCID7	Previously Reviewed	#5 Mill Stack with Baghouse	Cement Mill	SPM, crystalline silica	Yes	Yes	N/A
5-6	SRCID8	Previously Reviewed	#6 & #7 Mill Stack with Baghouse	Cement Mill	SPM, crystalline silica	Yes	Yes	N/A
5-7 5-8	SRCID11 SRCID12	Previously Reviewed Previously Reviewed	Primary Crusher with Baghouse Hammermill equipped with dust collector	Primary Crushing Secondary Crushing	SPM, crystalline silica SPM, crystalline silica	Yes Yes	Yes Yes	N/A N/A
5-9	SRCID12 SRCID13	Previously Reviewed	Screen House equipped with dust collector	Secondary Crushing Secondary Crushing	SPM, crystalline silica	Yes	Yes	N/A N/A
5-10	SRCID14	Previously Reviewed	Blend Silo 2 equipped with dust collector	Raw Material	SPM, crystalline silica	Yes	Yes	N/A
5-11	SRCID15	Previously Reviewed	Blend Silo 3 equipped with dust collector	Raw Material	SPM, crystalline silica	Yes	Yes	N/A
5-12	SRCID16	Previously Reviewed	Blend Silo 4(#3 Kiln Feed) equipped with dust collector	Raw Material	SPM, crystalline silica	Yes	Yes	N/A
5-13	SRCID17	Previously Reviewed	Blend Silo 6 equipped with dust collector	Raw Material	SPM, crystalline silica	Yes	Yes	N/A
5-14	SRCID18	Previously Reviewed	Kiln 3 Feed System equipped with dust collector	Kiln 3	SPM, crystalline silica	No	No	Decommissioned as Kiln 3 is no longer operational at the Facility
5-15	SRCID19	Previously Reviewed	Packhouse Truck #1 equipped with dust collector	Product Shipping	SPM, crystalline silica	Yes	Yes	N/A
5-16 5-17	SRCID20 SRCID21	Previously Reviewed Previously Reviewed	Packhouse North Packer equipped with dust collector Packhouse South Packer equipped with dust collector	Cement Product Cement Product	SPM, crystalline silica SPM, crystalline silica	Yes Yes	Yes Yes	N/A N/A
5-17	SRCID21 SRCID22	Previously Reviewed Previously Reviewed	Packhouse Masonary equipped with dust collector	Cement Product	SPM, crystalline silica	Yes	Yes	N/A N/A
5-19	SRCID23	Previously Reviewed	Silo #4 equipped with dust collector	Cement Storage	SPM, crystalline silica	Yes	Yes	N/A
5-20	SRCID26	Previously Reviewed	Dock Silo 1 equipped with dust collector	Cement Storage	SPM, crystalline silica	Yes	Yes	N/A
5-21	SRCID27	Previously Reviewed	Dock Silo 2 equipped with dust collector	Cement Storage	SPM, crystalline silica	Yes	Yes	N/A
5-22	SRCID28	Previously Reviewed	Dock Silo 3 equipped with dust collector	Cement Storage	SPM, crystalline silica	Yes	Yes	N/A
5-23	SRCID29	Previously Reviewed	Dock Silo 4 equipped with dust collector	Cement Storage	SPM, crystalline silica	Yes	Yes	N/A
5-26	SRCID33	Previously Reviewed	Waste Dust Bin equipped with dust collector	K3 Process	SPM, crystalline silica	No	No	Decommissioned as Kiln 3 is no longer operational at the Facility
5-27	SRCID35 SRCID36	Previously Reviewed	Clinker Ship Loading equipped with dust collector	Clinker Product	SPM, crystalline silica	Yes	Yes	N/A
5-28 5-31	SRCID36 SRCID42	Previously Reviewed Previously Reviewed	Brick Saw K-4 equipped with dust collector Coal Mill Dust Collector equipped with dust collector	Kiln 4 Process Coal Mill	SPM, crystalline silica SPM, crystalline silica	Yes Yes	Yes Yes	N/A N/A
5-32	SRCID43	Previously Reviewed	Indirect Firing - Coal Silo equipped with dust collector	Kiln Fuel	SPM, crystalline silica	Yes	Yes	N/A
5-33	SRCID44	Previously Reviewed	Indirect Firing - Coke Silo equipped with dust collector	Kiln Fuel	SPM, crystalline silica	Yes	Yes	N/A
5-34	SRCID45	Previously Reviewed	Ind. Firing - Weigh Feeder equipped with dust collector	Kiln Fuel	SPM, crystalline silica	Yes	Yes	N/A
5-35	SRCID46	Previously Reviewed	Ind. Firing - Weigh Feeder equipped with dust collector	Kiln Fuel	SPM, crystalline silica	Yes	Yes	N/A
5-36	SRCID47	Previously Reviewed	Coal Handling equipped with dust collector	Kiln Fuel	SPM, crystalline silica	Yes	Yes	N/A
5-37	SRCID48	Previously Reviewed	Coal Handling equipped with dust collector	Kiln Fuel	SPM, crystalline silica	Yes	Yes	N/A
5-38	SRCID49	Previously Reviewed	New Secondary Crusher equipped with dust collector	Secondary Crushing	SPM, crystalline silica	Yes	Yes	N/A
5-39 5-40	SRCID51 SRCID55	Previously Reviewed Previously Reviewed	Expansion - Limestone Storag e 105-1 equipped with dust collector Expansion - Bucket Eley, Dedust, 105-5 equipped with dust collector	Raw Material Crushed Limestone Storage	SPM, crystalline silica SPM, crystalline silica	Yes Yes	Yes Yes	N/A N/A
5-40	SRCID55	Previously Reviewed	Blend Silo 5 equipped with dust collector	Raw Feed Storage	SPM, crystalline silica	Yes	Yes	N/A
5-42	SRCID61	Previously Reviewed	Lime addition silo equipped with dust collector	Raw Material	SPM, crystalline silica	Yes	Yes	N/A
5-43	SRCID62	Previously Reviewed	Pan conveyor equipped with dust collector	Clinker Transfers	SPM, crystalline silica	Yes	Yes	N/A
5-44	SRCID63	Previously Reviewed	Truck load dust collector 2 equipped with dust collector- South scale	Cement Product	SPM, crystalline silica	Yes	Yes	N/A
5-45	SRCID64	Previously Reviewed	Truck load dust collector 4 equipped with dust collector - South scale	Cement Product	SPM, crystalline silica	Yes	Yes	N/A
5-46	SRCID65	Previously Reviewed	Truck Load dust collector 3 equipped with dust collector - East	Cement Product	SPM, crystalline silica	Yes	Yes	N/A
5-47	SRCID66	Previously Reviewed	Expansion - Hopper Feedoweights equipped with dust collector	Raw Material Handling	SPM, crystalline silica	Yes	Yes	N/A
5-48	SRCID67 SRCID68	Previously Reviewed	Slag dryer equipped with dust collector #8 Mill Stack	Raw Material Cement Mill	SPM, crystalline silica	Yes	Yes	N/A N/A
5-49 5-50	SRCID68 SRCID69	Previously Reviewed New	Cement dome dust collector	Cement Mill Cement Dome	SPM, crystalline silica SPM, crystalline silica	Yes Yes	Yes No	Emitted at less than 5% of the Facility's emissions
Other Sources	-	INEW	Cernent dome dust conector	Cement Bonie	OF IVI, CI YSTAIIII IE SIIICA	res	NO	Ethilited at less triain 5 % of the racility's ethissions
6	CLINK1 to 3, VFUG6, VFUG8A, VFUG8B, VFUG11 and VFUG12	Previously Reviewed	Clinker transfers	Facility	SPM, crystalline silica	Yes	Yes	N/A
7	_	Previously Reviewed	Storage Piles	Outdoor Storage Areas	SPM	No	No	Wind Erosion was not considered as BMPs are established to control fugitive dust emissions associated with material handling, as per Section 7.4.1 of the ESDM procedure Document.
8	_	Previously Reviewed	Paved and Unpaved Roads	Outdoors	SPM	No	No	Roads were not considered as BMPs are established to control fugitive dust emissions associated with material handling, as per Section 7.4.1 of the ESDM procedure Document.
9	_	New (no significant emission)	Alternative Low Carbon Fuels Receiving and Handling	Indoor Storage Areas	SPM	No	No	Receving and handling of materials are both enclosed.

Table 1
Sources and Contaminants Identification Table

			Source Information			0::	Maria Hari	
Source ID	Model Source ID	Source Costing Category	Source Name	General Location	Expected Contaminants	Significant (Yes or No)?	Modelled (Yes or No)?	Rationale
Supporting Pro	ocesses							
NEG1	_	Previously Reviewed	Comfort Heating Equipment	Facility	Nitrogen oxides	No	No	The comfort heating equipment can be considered negligible as per Section 7.2.2 of the ESDM Procedure Document as it emits significantly less than 5% of the Facility's nitrogen oxides compared to the kilns.
NEG2	_	Previously Reviewed	Maintenance Welding	Facility	SPM, metals	Yes	No	All contaminants are either emitted at less than 5% of the total facility emissions or are below the emission threshold when screening.
NEG3	_	Previously Reviewed	Quality Assurance and Quality Control Fume Hoods	Facility	VOCs	No	No	Negligible as per Table B-3A of the ESDM Procedure Document
NEG4	_	Previously Reviewed	Parts washers for maintenance shops	Facility	VOCs	No	No	Negligible as per Table B-3A of the ESDM Procedure Document
NEG5	_	Previously Reviewed	On-site storage tanks for fueling of on-site vehicles	Facility	VOCs	No	No	Negligible as per Table B-3A of the ESDM Procedure Document

							Source Sum	mary Table									
					Source Parar	neters							Em	ission Data			
Source ID	Model Source ID	Source Description	Stack Volumetric Flow Rate [Am³/s]	Stack Velocity [m/s]	Stack Exit Gas Temperature [°C]		Stack Height Above Grade [m]	Stack Height Above Roof [m]		Source Location [Y Coordinate]	Contaminant	CAS No.	Averaging Period [hours]	Maximum Emission Rate [g/s]	Emission Estimating Technique	Emissions Data Quality	Percentage of Overall Emissions [%]
Quarry Oper	ations						Grade [iii]	[111]									[/0]
Q1		Blasting - Hole Drilling									SPM	N/A-1	24	1.56E-02	EF	Marginal	<1%
	_		_	_	_	_	_	_	_	_	Crystalline Silica	14808-60-7	24	2.13E-03	EC	Marginal	<1%
Q2		Blasting									SPM	N/A-1	24	2.35E-02	EF	Average	<1%
											Crystalline Silica	14808-60-7	24	1.61E-03	EC	Average	<1%
	_		_	_	_	_	_	_	_	_	Carbon Monoxide	630-08-0 10102-44-0	1, 24	3.78E+01 8.89E+00	EF EF	Marginal	63% 7%
											Nitrogen Oxides Sulphur dioxide	7446-09-5	1, 24	1.11E+00	EF EF	Marginal Marginal	8%
Q5	QUARRY5	Material transfers							000000	4000040	SPM	N/A-1	24	2.05E+00	EF	Average	10%
	QUARRY5		_	_	_	_	_	_	328898	4880219	Crystalline Silica	14808-60-7	24	1.23E-01	EC	Average	6%
	ls Storage and Tra																
1-1	VFUG4	Haul Truck dump into Primary Crusher	_	_	_	_	_	_	330207	4879840	SPM	N/A-1	24	1.85E-01	EF	Marginal	<1%
1-2	VFUG4 VFUG4A	S-2 to Crushed Limestone Pile			+				330081	4879923	Crystalline Silica SPM	14808-60-7 N/A-1	24 24	1.11E-02 4.62E-01	EC EF	Average Above Average	<1% 2%
1-2	VFUG4A	S-2 to Grusned Limestone Pile	_	_	_	_	_	-	330061	4079923	Crystalline Silica	14808-60-7	24	2.77E-02	EC	Average	1%
2	SECOND	Secondary Crusher		_		_	_	_	330135	4879962	SPM	N/A-1	24	6.38E-03	EF	Average	<1%
	SECOND		_	_	_	_	_	_			Crystalline Silica	14808-60-7	24	4.63E-04	EC	Marginal	<1%
3-1	COALSHIP	LSC and coke unloading from ship	_	_	_	_	_	_	329973	4879327	SPM	N/A-1	24	1.94E+00	EF	Average	10%
	COALSHIP								000070	4070050	Crystalline Silica	14808-60-7	24	1.16E-01	EC	Above Average	6%
3-2	COALTD	LSC and coke shore pile outloading	_	_	_	_	_	_	329979	4879358	SPM Crystalline Silica	N/A-1 14808-60-7	24	4.34E-02 2.60E-03	EF EC	Average Above Average	<1% <1%
3-3	GYPSHIP	Anhydride and crude gypsum unloading from ship							330127	4879622	SPM	N/A-1	24	2.00E-03 2.09E+00	EF	Above Average Above Average	10%
0-0	GYPSHIP	Transparade and order gypourn amounting from one	_	_	_	_	_	-	330127	4073022	Crystalline Silica	14808-60-7	24	1.25E-01	EC	Average	7%
3-4	GYPSUMTD	Anhydride and crude gypsum shore pile outloading							330127	4879654	SPM	N/A-1	24	9.68E-02	EF	Average	<1%
	GYPSUMTD		_	_	_	_	_	_			Crystalline Silica	14808-60-7	24	5.80E-03	EC	Average	<1%
3-5	MISCDROP	Silica, iron, and and alumina additive drop to pile and drop to storage hall	_	_	_	_	_	_	330150	4880323	SPM	N/A-1	24	3.87E-01	EF	Average	2%
	MISCDROP										Crystalline Silica	14808-60-7	24	2.32E-02	EC	Average	1%
3-6	CKD	CKD drop to pile and outloading to sales	_	_	_	_	_	_	3329967	4879735	SPM	N/A-1	24	3.72E-01	EF	Average	2%
3-7	CKD VFUG5	Fuel drop into feed hopper							330156	4880159	Crystalline Silica SPM	14808-60-7 N/A-1	24	2.23E-02 2.48E-02	EC EF	Average Average	1% <1%
3-7	VFUG5		_	_	_	_	_	_	330130	4000139	Crystalline Silica	14808-60-7	24	1.49E-03	EC	Average	<1%
																1111191	
Kilns																	
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	SPM	N/A-1	24	6.21E+00	EF	Marginal	31%
4-2 4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica	14808-60-7	24	7.24E-01	EF	Marginal	38%
4-2 4-2 4-2	KILN4 KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ)	14808-60-7 N/A-4	24 24	7.24E-01 1.81E-09	EF ST	Marginal Uncertain	38% 97%
4-2 4-2 4-2 4-2	KILN4 KILN4 KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide	14808-60-7 N/A-4 630-08-0	24 24 ½	7.24E-01 1.81E-09 2.22E+01	EF ST EF	Marginal Uncertain Marginal	38% 97% 37%
4-2 4-2 4-2 4-2 4-2	KILN4 KILN4 KILN4 KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide	14808-60-7 N/A-4 630-08-0 124-38-9	24 24 ½ 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04	EF ST	Marginal Uncertain Marginal Average	38% 97% 37% 50%
4-2 4-2 4-2 4-2	KILN4 KILN4 KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide	14808-60-7 N/A-4 630-08-0	24 24 ½	7.24E-01 1.81E-09 2.22E+01	EF ST EF EF	Marginal Uncertain Marginal	38% 97% 37%
4-2 4-2 4-2 4-2 4-2 4-2	KILN4 KILN4 KILN4 KILN4 KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0	24 24 ½ 24 1, 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02	EF ST EF EF EF EF	Marginal Uncertain Marginal Average Marginal	38% 97% 37% 50% 91%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5	24 24 ½ 24 1, 24 1, 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01	EF ST EF EF EF EF EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6	24 24 ½ 24 1, 24 1, 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00	EF ST EF EF EF EF EF EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Marginal	38% 97% 37% 50% 91% 90% 100% 50%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-36-0	24 24 ½ 24 1, 24 1, 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04	EF ST EF EF EF EF EF EF EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain	38% 97% 37% 50% 91% 90% 100% 50% 50%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony Arsenic	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-36-0 7440-38-2	24 24 ½ 24 1,24 1,24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04	EF ST EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Marginal Marginal Marginal	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-36-0	24 24 ½ 24 1,24 1,24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04	EF ST EF EF EF EF EF EF EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain	38% 97% 37% 50% 91% 90% 100% 50% 50%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony Arsenic Barium	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-36-0 7440-38-2 7440-39-3	24 24 ½ 24 1,24 1,24 24 24 24 24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Marginal Marginal Uncertain Marginal Uncertain	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8	24 24 ½ 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Marginal Marginal Marginal Marginal Marginal Marginal	38% 97% 37% 50% 91% 90% 100% 50% 11% 77% 29% 94% 29% 98.6%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-41-7 1305-78-8 N/A-5	24 24 ½ 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.54E+01	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29% 94% 29% 98.6% 100%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3	24 24 ½ 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.54E+01 1.77E-04	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29% 94% 29% 98.6% 100% 14%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Cobalt	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4	24 24 ½ 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.57E-04 1.77E-04 1.23E-02	EF ST EF EF EF EF EF EF EF ST	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Cobalt Copper	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-8 N/A-5 7440-47-3 7440-48-4 7440-50-8	24 24 ½ 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.57E-04 1.77E-04 1.23E-02 1.18E-01	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 11% 77% 29% 94% 29% 94.6% 100% 14% 93% 97%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Cobalt	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4	24 24 ½ 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.57E-04 1.77E-04 1.23E-02	EF ST EF EF EF EF EF EF EF ST	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Copper Hydrogen Fluoride	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 N/A-6 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4 7440-50-8 7664-39-3	24 24 ½ 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.54E+01 1.77E-04 1.23E-02 1.18E-01 2.04E-02	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29% 94% 29% 94.6% 100% 14% 93% 97% 89%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Cobalt Copper Hydrogen Fluoride Iron Lead	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4 7440-50-8 7647-01-0 15438-31-0 7439-92-1	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 111% 77% 29% 94% 29% 98.6% 100% 14% 93% 97% 89% 98% 46% 86%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Cobalt Copper Hydrogen Fluoride Hydrogen Chloride Iron Lead Manganese	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4 7440-50-8 7647-01-0 15438-31-0 7439-96-5	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02 1.95E-02	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93% 97% 89% 98.6%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chromium Cobalt Copper Hydrogen Fluoride Hydrogen Chloride Iron Lead Manganese Mercury	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4 7440-50-8 7664-39-3 7647-01-0 15438-31-0 7439-92-1 7439-96-5 7439-97-6	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02 1.95E-02 4.47E-02	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93% 97% 89% 98% 46% 86% 86% 87% 100%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chromium Cobalt Copper Hydrogen Fluoride Hydrogen Chloride Iron Lead Manganese Mercury Nickel	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4 7440-50-8 7664-39-3 7647-01-0 15438-31-0 7439-96-5 7439-97-6 7440-02-0	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02 4.47E-02 4.78E-03	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93% 97% 89% 98% 46% 86% 87% 100% 91%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Cobalt Copper Hydrogen Fluoride Hydrogen Chloride Iron Lead Manganese Mercury Nickel Nitrate	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-43-9 1305-78-8 N/A-5 7440-43-9 7664-39-3 7647-01-0 15438-31-0 15439-92-1 7439-96-5 7439-97-6 7440-02-0 N/A-7	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.54E+01 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02 1.95E-02 4.47E-02 4.78E-03 1.04E-01	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 11% 29% 94% 29% 98.6% 100% 14% 93% 97% 89% 98% 46% 86% 86% 100%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chromium Cobalt Copper Hydrogen Fluoride Hydrogen Chloride Iron Lead Manganese Mercury Nickel	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4 7440-50-8 7664-39-3 7647-01-0 15438-31-0 7439-96-5 7439-97-6 7440-02-0	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02 4.47E-02 4.78E-03	EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93% 97% 89% 98% 46% 86% 87% 100% 91%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Cobalt Copper Hydrogen Fluoride Hydrogen Chloride Iron Lead Manganese Mercury Nickel Nitrate Phosphorus	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4 7440-50-8 7664-39-3 7647-01-0 15438-31-0 7439-96-5 7439-97-6 7430-02-0 N/A-7 7723-14-0	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.54E+01 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02 4.47E-02 4.78E-03 1.04E-01 1.20E-01	EF ST EF EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain	38% 97% 37% 50% 91% 90% 100% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93% 98% 46% 86% 87% 86% 87% 91% 50% 91% 50%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Copper Hydrogen Fluoride Hydrogen Chloride Iron Lead Manganese Mercury Nickel Nitrate Phosphorus Poiddes Carbon Monoxide Chloride Chromium Cobalt Copper Hydrogen Chloride Hydrogen Chloride Iron Lead Manganese	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4 7440-50-8 7664-39-3 7647-01-0 15438-31-0 7439-92-1 7439-96-5 7439-97-6 7440-02-0 N/A-7 7723-14-0 7440-09-7 7782-49-2 7440-21-3	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.54E+01 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02 4.47E-02 4.78E-03 1.04E-01 1.20E-01 4.08E-01 3.40E-03 6.21E+00	EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Marginal Marginal Marginal Marginal Marginal Marginal Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain	38% 97% 37% 50% 91% 90% 100% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93% 97% 89% 46% 86% 87% 100% 91% 50% 50% 50%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Cobalt Copper Hydrogen Fluoride Hydrogen Fluoride Hydrogen Chloride Iron Lead Manganese Mercury Nickel Nitrate Phosphorus Potassium Selenium Silicon Silver	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-38-2 7440-38-2 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-41-7 7440-48-4 7440-50-8 7647-01-0 15438-31-0 7439-96-5 7439-97-6 7440-09-7 7723-14-0 7440-09-7 7782-49-2 7440-21-3 7440-22-4	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02 1.95E-02 4.77E-02 4.78E-03 1.04E-01 1.20E-01 4.08E-01 3.40E-03 6.21E+00 1.40E-05	EF ST EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain	38% 97% 37% 50% 91% 90% 100% 50% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93% 97% 89% 98% 46% 86% 87% 100% 91% 50% 93% 40%
4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2 4-2	KILN4	Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiin 4 Stack with ESPs, SNCR ammonia	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	Crystalline Silica Dioxins and Furans (TEQ) Carbon Monoxide Carbon Dioxide Nitrogen Oxides Sulphur dioxide Ammonia Aluminum Ammonium Antimony Arsenic Barium Beryllium Cadmium Calcium Oxide Chloride Chromium Cobalt Copper Hydrogen Fluoride Hydrogen Chloride Iron Lead Manganese Mercury Nickel Nitrate Phosphorus Potassium Selenium Silicon	14808-60-7 N/A-4 630-08-0 124-38-9 10102-44-0 7446-09-5 7664-41-7 7429-90-5 N/A-6 7440-39-3 7440-41-7 7440-43-9 1305-78-8 N/A-5 7440-47-3 7440-48-4 7440-50-8 7664-39-3 7647-01-0 15438-31-0 7439-92-1 7439-96-5 7439-97-6 7440-02-0 N/A-7 7723-14-0 7440-09-7 7782-49-2 7440-21-3	24 24 24 1, 24 1, 24 24 24 24 24 24 24 24 24 24 24 24 24 2	7.24E-01 1.81E-09 2.22E+01 4.08E+04 1.09E+02 1.22E+01 7.19E+00 2.94E-01 2.45E+00 1.35E-04 2.94E-04 8.15E-03 1.49E-05 1.90E-04 5.43E+00 1.54E+01 1.77E-04 1.23E-02 1.18E-01 2.04E-02 1.02E+01 3.85E-01 1.63E-02 4.47E-02 4.78E-03 1.04E-01 1.20E-01 4.08E-01 3.40E-03 6.21E+00	EF	Marginal Uncertain Marginal Average Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Marginal Marginal Marginal Marginal Marginal Marginal Marginal Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain Marginal Uncertain	38% 97% 37% 50% 91% 90% 100% 50% 11% 77% 29% 94% 29% 98.6% 100% 14% 93% 97% 89% 46% 86% 87% 100% 91% 50% 50% 50%

							Source Sumn	mary Table									
					Source Parar	neters							En	nission Data			
			Stack	Stack	Stack Exit Gas	Stack Inner	Stack	Stack					Averaging	Maximum	Emission		Percentage
Source ID	Model Source ID	Source Description	Volumetric Flow	Velocity	Temperature	Diameter	Height		Source Location		Contaminant	CAS No.	Period	Emission Rate	Estimating	Emissions Data	
			Rate [Am³/s]	[m/s]	[°C]	[m]	Above		[X Coordinate]	[Y Coordinate]			[hours]	[g/s]	Technique	Quality	Emissions
	1201 512			• •			Grade [m]	[m]							•		[%]
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Sulfur trioxide	N/A-9	24	1.90E+00	EF	Marginal	85%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Thallium	7440-28-0	24	1.22E-04	EF.	Marginal	93%
4-2	KILN4 KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Tin	7440-31-5 7440-32-6	24	1.23E-01	ST EF	Uncertain	95%
4-2 4-2	KILN4 KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs. SNCR ammonia injection, and lime injection									Titanium	7440-32-6	24 24	8.60E-03 1.62E-04	ST	Marginal Uncertain	40% 91%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs. SNCR ammonia injection, and lime injection									Vanadium Zinc	7440-62-2	24	1.22E-02	EF	Marginal	3%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs. SNCR ammonia injection, and lime injection									C3 benzenes	N/A-10	24	5.89E-05	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									C4 benzenes	N/A-10	24	1.36E-04	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									C6 benzenes	N/A-12	24	2.08E-05	EF EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Acenaphthylene	208-96-8	24	2.67E-03	EF EF	Marginal	100%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Acetone	67-64-1	24	8.60E-03	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs. SNCR ammonia injection, and lime injection									Benzaldehyde	100-52-7	24	5.43E-04	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Benzene	71-43-2	24, Annual	7.24E-02	EF	Marginal	100%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Benzo(a)anthracene	56-55-3	24	9.51E-07	EF	Marginal	96%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Benzo(a)pyrene	50-32-8	24, Annual	2.94E-06	EF	Marginal	99%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Benzo(b)fluoranthene	205-99-2	24	1.27E-05	EF	Marginal	100%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Benzo(g,h,i)perylene	191-24-2	24	1.77E-06	EF	Marginal	96%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Benzo(k)fluoranthene	207-08-9	24	3.49E-06	EF	Marginal	99%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Benzoic acid	65-85-0	24	8.15E-02	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Biphenyl	92-52-4	24	1.40E-04	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Bis(2-ethylhexyl)phthalate	117-81-7	24	2.17E-03	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Bromomethane	74-83-9	24	9.96E-04	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Carbon disulfide	75-15-0	24	2.49E-03	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Chlorobenzene	108-90-7	10-min, 24	3.62E-04	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Chloromethane	74-87-3	24	8.60E-03	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Chrysene	218-01-9	24	3.67E-06	EF	Marginal	99%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Di-n-butylphthalate	84-74-2	24	9.51E-04	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Dibenz(a,h)anthracene	53-70-3	24	1.40E-05	EF	Marginal	100%
4-2 4-2	KILN4 KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs. SNCR ammonia injection, and lime injection									Ethylbenzene	100-41-4	24 24	4.30E-04 1.99E-04	EF EF	Marginal	74% 100%
4-2 4-2	KILN4 KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs. SNCR ammonia injection, and lime injection									Fluoranthene Fluorene	206-44-0 86-73-7	24	4.26E-04	EF EF	Marginal Marginal	100%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection Kiln 4 Stack with ESPs. SNCR ammonia injection, and lime injection									Formaldehyde	50-00-0	24	1.04E-02	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Freon 113	76-13-1	24	1.13E-03	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Indeno(1,2,3-cd)pyrene	193-39-5	24	1.95E-06	EF	Marginal	99%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Methyl ethyl ketone	78-93-3	24	6.79E-04	EF	Marginal	82%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Methylene chloride	75-09-2	24	1.13E-02	EF.	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Methylnaphthalene	90-12-0	24	9.51E-05	EF EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Naphthalene	91-20-3	24	4.98E-03	EF	Marginal	100%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Phenanthrene	85-01-8	24	9.06E-03	EF	Marginal	100%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Phenol	108-95-2	24	2.49E-03	EF	Marginal	50%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Pyrene	129-00-0	24	9.96E-05	EF	Marginal	100%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Styrene	100-42-5	24	3.40E-05	EF	Marginal	19%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Toluene	108-88-3	24	4.53E-03	EF	Marginal	97%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Xylenes	1330-20-7	10-min, 24	2.94E-03	EF	Marginal	87%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									PCBs	1336-36-3	24	1.76E-04	ST	Uncertain	100%
4-4	KILN4_C	Kiln 4 Cooler with baghouse	128.9	14.20	120	3.40	38.0	N/A	330215	4880156	SPM	N/A-1	24	3.08E+00	EF	Marginal	15%
4-4	KILN4_C	Kiln 4 Cooler with baghouse									Crystalline Silica	14808-60-7	24	3.59E-01	EF	Marginal	19%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse	22.8	12.56	120	1.52	83.2	N/A	330099	4880073	SPM	N/A-1	24	4.56E-01	EF	Average	2%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Crystalline Silica	14808-60-7	24	5.31E-02	EF	Marginal	3%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Dioxins and Furans (TEQ)	N/A-4	24	6.13E-11	ST	Uncertain	3%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Carbon Monoxide	630-08-0	1/2	1.33E-01	ST	Uncertain	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Carbon Dioxide	124-38-9	24	4.08E+04	EF	Average	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Nitrogen Oxides	10102-44-0	1, 24	1.48E+00	ST	Uncertain	1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Sulphur dioxide	7446-09-5	1, 24	2.47E-01	ST	Uncertain	2%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Ammonia	7664-41-7	24	1.57E-03	ST	Uncertain	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Aluminum	7429-90-5	24	2.94E-01	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Ammonium	N/A-6	24	2.45E+00	EF et	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Antimony	7440-36-0	24	1.08E-03	ST	Uncertain	89%
4-5 4-5	KILN4_BP	Kiln 4 Bypass Stack with bagbouse									Arsenic	7440-38-2	24	8.98E-05	ST	Uncertain	23%
4-5 4-5	KILN4_BP	Kiln 4 Bypass Stack with bagbouse				1					Barium	7440-39-3 7440-41-7	24	2.01E-02 1.01E-06	EF ST	Marginal Uncertain	71%
4-5 4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse Kiln 4 Bypass Stack with baghouse									Beryllium Bismuth	7440-41-7	24	1.01E-06 4.56E-01			6%
4-5 4-5	KILN4_BP KILN4_BP										Cadmium	7440-69-9	24 24	4.56E-01 4.58E-04	MB ST	Average Uncertain	100% 71%
4-5 4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse Kiln 4 Bypass Stack with baghouse									Calcium Oxide	1305-78-8	24	4.58E-04 7.67E-02	ST	Uncertain	1.4%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Calcium Oxide	N/A-5	24	4.98E-02	EF	Marginal	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Chromium	7440-47-3	24	1.11E-03	ST	Uncertain	86%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Cobalt	7440-48-4	24	9.40E-04	ST	Uncertain	7%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse				1					Copper	7440-50-8	24	3.29E-03	ST	Uncertain	3%
		71 3	-								,	1				1	

						;	Source Sum	mary Table									
					Source Parar	neters							En	nission Data			
			Stack	Stack	Stack Exit Gas	Stack Inner	Stack	Stack					Averaging	Maximum	Emission		Percentage
Source ID	Model Source ID	Source Description	Volumetric Flow	Velocity	Temperature	Diameter	Height	_		Source Location	Contaminant	CAS No.	Period	Emission Rate	Estimating	Emissions Data	of Overall
			Rate [Am³/s]	[m/s]	[°C]	[m]	Above	Above Roof	[X Coordinate]	[Y Coordinate]	Sontaminant	OAO NO.	[hours]	[g/s]	Technique	Quality	Emissions
			rtate [ram /e]	[0]	1.01	[]	Grade [m]	[m]							·		[%]
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Hydrogen Fluoride	7664-39-3	24	2.42E-03	ST	Uncertain	11%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Hydrogen Chloride	7647-01-0	24	2.17E-01	ST	Uncertain	2%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Iron	15438-31-0		4.56E-01	EF	Marginal	54%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Lead	7439-92-1	24, 30-day	2.73E-03 4.56E-01	ST MB	Uncertain	14%
4-5 4-5	KILN4_BP KILN4_BP	Kiln 4 Bypass Stack with baghouse									Magnesium	7439-95-4 7439-96-5	24 24	4.56E-01 2.90E-03	ST	Average Uncertain	100% 13%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse Kiln 4 Bypass Stack with baghouse									Manganese Mercury	7439-96-5	24	1.03E-04	ST	Uncertain	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Nickel	7440-02-0		4.92E-04	ST	Uncertain	9%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Nitrate	N/A-7	24	1.04E-01	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Phosphorus	7723-14-0	24	8.92E-03	ST	Uncertain	7%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Potassium	7440-09-7	24	4.08E-01	EF	Marginal	50%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Selenium	7782-49-2	24	4.53E-03	EF	Marginal	57%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Silicon	7440-21-3	24	4.56E-01	ST	Uncertain	7%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Silver	7440-22-4	24	2.12E-05	EF	Marginal	60%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Sodium	7440-23-5	24	4.56E-01	EF	Marginal	33%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Sulfate	N/A-8	24	1.63E-01	EF	Marginal	3%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Sulfur trioxide	N/A-9	24	3.31E-01	EF	Marginal	15%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Thallium	7440-28-0	24	8.99E-06	ST	Uncertain	7%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Tin	7440-31-5	24	6.23E-03	ST	Uncertain	5%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Titanium	7440-32-6	24	1.30E-02	EF	Marginal	60%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Tungsten	7440-33-7	24	4.56E-01	MB	Average	100%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Vanadium	7440-62-2	24	1.54E-05	ST	Uncertain	9%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Zinc	7440-66-6	24	4.56E-01	ST	Uncertain	97%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									C3 benzenes	N/A-10	24	5.89E-05	EF	Marginal	50%
4-5 4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									C4 benzenes	N/A-11 N/A-12	24	1.36E-04	EF	Marginal	50%
4-5	KILN4_BP KILN4_BP	Kiln 4 Bypass Stack with baghouse Kiln 4 Bypass Stack with baghouse									C6 benzenes Acenaphthylene	208-96-8	24 24	2.08E-05 7.19E-08	EF ST	Marginal Uncertain	50% <1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Acetaphinylene	67-64-1	24	8.60E-03	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Benzaldehyde	100-52-7	24	5.43E-04	EF	Marginal	50%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Benzene	71-43-2	24, Annual	1.48E-04	ST	Uncertain	<1%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Benzo(a)anthracene	56-55-3	24	4.26E-08	ST	Uncertain	4%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Benzo(a)pyrene	50-32-8	24, Annual	2.34E-08	ST	Uncertain	<1%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Benzo(b)fluoranthene	205-99-2	24	2.73E-08	ST	Uncertain	<1%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Benzo(g,h,i)perylene	191-24-2	24	7.79E-08	ST	Uncertain	4%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Benzo(k)fluoranthene	207-08-9	24	2.73E-08	ST	Uncertain	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Benzoic acid	65-85-0	24	8.15E-02	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Biphenyl	92-52-4	24	1.40E-04	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Bis(2-ethylhexyl)phthalate	117-81-7	24	2.17E-03	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Bromomethane	74-83-9	24	9.96E-04	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Carbon disulfide	75-15-0	24	2.49E-03	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Chlorobenzene	108-90-7	10-min, 24	3.62E-04	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Chromethane	74-87-3	24	8.60E-03	EF CT	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Chrysene Din butulahthalata	218-01-9	24	2.06E-08	ST EF	Uncertain	<1% 50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Di-n-butylphthalate	84-74-2 53-70-3	24	9.51E-04		Marginal	
4-5 4-5	KILN4_BP KILN4_BP	Kiln 4 Bypass Stack with baghouse Kiln 4 Bypass Stack with baghouse									Dibenz(a,h)anthracene Ethylbenzene	53-70-3 100-41-4	24 24	4.26E-08 1.48E-04	ST ST	Uncertain Uncertain	<1% 26%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Fluoranthene	206-44-0	24	1.46E-04 1.35E-07	ST	Uncertain	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Fluorene	86-73-7	24	2.80E-07	ST	Uncertain	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Formaldehyde	50-00-0	24	1.04E-02	ST	Uncertain	50%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Freon 113	76-13-1	24	1.13E-03	EF	Marginal	50%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Indeno(1,2,3-cd)pyrene	193-39-5	24	2.73E-08	ST	Uncertain	1%
4-5	KILN4 BP	Kiln 4 Bypass Stack with baghouse									Methyl ethyl ketone	78-93-3	24	1.48E-04	ST	Uncertain	18%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Methylene chloride	75-09-2	24	1.13E-02	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Methylnaphthalene	90-12-0	24	9.51E-05	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Naphthalene	91-20-3	24	7.73E-06	ST	Uncertain	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Phenanthrene	85-01-8	24	5.19E-07	ST	Uncertain	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Phenol	108-95-2	24	2.49E-03	EF	Marginal	50%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Pyrene	129-00-0	24	1.19E-07	ST	Uncertain	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Styrene	100-42-5	24	1.48E-04	ST	Uncertain	81%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Toluene	108-88-3	24	1.58E-04	ST	Uncertain	3%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Xylenes	1330-20-7		4.44E-04	ST	Uncertain	13%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									PCBs	1336-36-3	24	1.44E-07	ST	Uncertain	<1%

							Source Sumr	mary Table									
					Source Parar	meters	0	0					En	nission Data			
Source ID	Model Source ID	Source Description	Stack Volumetric Flow Rate [Am³/s]	Stack Velocity [m/s]	Stack Exit Gas Temperature [°C]	Stack Inner Diameter [m]	Stack Height Above Grade [m]		Source Location [X Coordinate]	Source Location [Y Coordinate]	Contaminant	CAS No.	Averaging Period [hours]	Maximum Emission Rate [g/s]	Emission Estimating Technique	Emissions Data Quality	Percentage of Overall Emissions [%]
Baghouses	_											Ţ.					
5-1	SRCID3	#1 Mill Stack with Baghouse	20.2	31.75	65	0.9	51.2	24.2	330059	4880137	SPM	N/A-1	24	1.38E-01	EF	Marginal	<1%
5-1 5-2	SRCID3 SRCID4	#1 Mill Stack with Baghouse #2 Mill Stack with Baghouse	18.7	29.39	65	0.9	51.2	24.2	330065	4880146	Crystalline Silica SPM	14808-60-7 N/A-1	24 24	1.60E-02 1.38E-01	EF EF	Marginal Marginal	<1% <1%
5-2 5-2	SRCID4	#2 Mill Stack with Baghouse	10.7	29.39	65	0.9	31.2	24.2	330065	4000140	Crystalline Silica	14808-60-7	24	1.60E-02	EF	Marginal	<1%
5-3	SRCID5	#3 Mill Stack with Baghouse	20.2	31.75	85	0.9	51.2	24.2	330070	4880157	SPM	N/A-1	24	5.25E-02	EF	Marginal	<1%
5-3	SRCID5	#3 Mill Stack with Baghouse									Crystalline Silica	14808-60-7	24	6.11E-03	EF	Marginal	<1%
5-4	SRCID6	#4 Mill Stack with Baghouse	20.2	31.75	85	0.9	51.2	24.2	330076	4880165	SPM Crystalline Silica	N/A-1 14808-60-7	24 24	5.25E-02 6.11E-03	EF EF	Marginal Marginal	<1% <1%
5-5	SRCID7	#5 Mill Stack with Baghouse	30.8	20.01	82	1.4	45.7	18.7	330072	4880191	SPM	N/A-1	24	6.42E-02	EF	Marginal	<1%
5-5	SRCID7										Crystalline Silica	14808-60-7	24	7.47E-03	EF	Marginal	<1%
5-6	SRCID8	#6 & #7 Mill Stack with Baghouse	60.7	39.43	85	1.4	45.7	18.7	330088	4880187	SPM	N/A-1	24	9.33E-02	EF	Marginal	<1%
5-7	SRCID11	#6 & #7 Mill Stack with Baghouse Primary Crusher with Baghouse	3.2	19.26	Ambient	0.46	12		330210	4879837	Crystalline Silica SPM	14808-60-7 N/A-1	24 24	1.09E-02 7.64E-02	EF EF	Marginal Marginal	<1% <1%
5-7 5-7	SRCID11	Primary Crusher with Baghouse	3.2	19.20	Ambient	0.46	12	_	330210	40/903/	Crystalline Silica	14808-60-7	24	8.90E-03	EF	Marginal	<1%
5-8	SRCID12	Hammermill equipped with dust collector	4.3	14.81	Ambient	0.608	24.7	_	330139	4879968	SPM	N/A-1	24	4.86E-02	EF	Marginal	<1%
5-8	SRCID12	Hammermill equipped with dust collector									Crystalline Silica	14808-60-7	24	5.66E-03	EF	Marginal	<1%
5-9	SRCID13	Screen House equipped with dust collector	9.0	20.00	Ambient	0.757	24.7	_	330177	4880012	SPM Oracle History Office a	N/A-1	24	1.07E-02	EF	Marginal	<1%
5-9	SRCID13	Screen House equipped with dust collector Blend Silo 2 equipped with dust collector	0.9	7.16	80	0.40	36.6	_	329980.809	4880076	Crystalline Silica SPM	14808-60-7 N/A-1	24 24	1.25E-03 9.00E-03	EF EF	Marginal Average	<1% <1%
5-10	SRCID14	Blend Silo 3 equipped with dust collector	0.5	7.10		0.40	00.0		023300.003	4000070	Crystalline Silica	14808-60-7	24	1.05E-03	EF	Average	<1%
5-11	SRCID15	Blend Silo 3 equipped with dust collector	6.6	18.72	80	0.67	36.6	_	329959.116	4880070	SPM	N/A-1	24	1.32E-01	EF	Average	<1%
5-11	SRCID15	Blend Silo 3 equipped with dust collector									Crystalline Silica	14808-60-7	24	1.54E-02	EF	Average	<1%
5-12	SRCID16	Blend Silo 4(#3 Kiln Feed) equipped with dust collector	4.5	14.71	80	0.62	36.6	-	329967.960	4880084	SPM OF THE PROPERTY OF THE PRO	N/A-1	24	4.50E-02	EF	Average	<1%
5-12 5-13	SRCID16 SRCID17	Blend Silo 4 (#3 Kiln Feed) equipped with dust collector Blend Silo 6 equipped with dust collector	5.2	26.48	80	0.5	36.6	_	329965.869	4880053	Crystalline Silica SPM	14808-60-7 N/A-1	24 24	5.24E-03 5.20E-02	EF EF	Average Average	<1% <1%
5-13	SRCID17 SRCID17	Blend Silo 6 equipped with dust collector	5.2	20.40	80	0.5	30.0	_	329903.009	4000033	Crystalline Silica	14808-60-7	24	6.06E-03	EF	Average	<1%
5-15	SRCID19	Packhouse Truck #1 equipped with dust collector	0.4	8.29	90	0.254	8	_	329979	4880228	SPM	N/A-1	24	4.20E-03	EF	Average	<1%
5-15	SRCID19	Packhouse Truck #1 equipped with dust collector									Crystalline Silica	14808-60-7	24	4.89E-04	EF	Average	<1%
5-16	SRCID20	Packhouse North Packer equipped with dust collector	5.2	18.48	50	0.598	15	_	329979	4880228	SPM	N/A-1	24	1.04E-01	EF	Average	<1%
5-16	SRCID20 SRCID21	Packhouse North Packer equipped with dust collector Packhouse South Packer equipped with dust collector	2.9	14.77	50	0.50	13	5	329979	4880228	Crystalline Silica SPM	14808-60-7 N/A-1	24 24	1.21E-02 2.90E-02	EF EF	Average Average	<1% <1%
5-17 5-17	SRCID21	Packhouse South Packer equipped with dust collector	2.9	14.77	50	0.50	13	5	329979	4000220	Crystalline Silica	14808-60-7	24	3.38E-03	EF	Average	<1%
5-18	SRCID22	Packhouse Masonary equipped with dust collector	1.2	16.98	50	0.30	35.3	2.3	330002	4880229	SPM	N/A-1	24	1.20E-02	EF	Average	<1%
5-18	SRCID22	Packhouse Masonary equipped with dust collector									Crystalline Silica	14808-60-7	24	1.40E-03	EF	Average	<1%
5-19	SRCID23	Silo #4 equipped with dust collector	6.6	20.07	100	0.647	35.3	2.3	330022	4880230	SPM	N/A-1	24	1.32E-01	EF	Average	<1%
5-19	SRCID23 SRCID26	Silo #4 equipped with dust collector Dock Silo 1 equipped with dust collector	4.5	10.19	80	0.75	48.1	_	330229.865	4879868	Crystalline Silica SPM	14808-60-7 N/A-1	24 24	1.54E-02 4.50E-02	EF EF	Average Average	<1% <1%
5-20 5-20	SRCID26	Dock Silo 1 equipped with dust collector	4.5	10.19	80	0.75	40.1	_	330229.803	4079000	Crystalline Silica	14808-60-7	24	5.24E-03	EF	Average	<1%
5-21	SRCID27	Dock Silo 2 equipped with dust collector	4.5	10.19	80	0.75	48.1	_	330238.514	4879883	SPM	N/A-1	24	4.50E-02	EF	Average	<1%
5-21	SRCID27	Dock Silo 2 equipped with dust collector									Crystalline Silica	14808-60-7	24	5.24E-03	EF	Average	<1%
5-22	SRCID28	Dock Silo 3 equipped with dust collector Dock Silo 3 equipped with dust collector	4.5	10.19	80	0.75	48.1	_	330244	4879892	SPM Crystalline Silica	N/A-1	24 24	4.50E-02 5.24E-03	EF EF	Average	<1% <1%
5-23	SRCID28	Dock Silo 4 equipped with dust collector	4.5	10.19	80	0.75	48.1	_	330248.061	4879898	SPM	14808-60-7 N/A-1	24	4.50E-02	EF	Average Average	<1%
5-23	SRCID29	Dock Silo 4 equipped with dust collector	4.5	10.10		0.70	40.1		000240.001	4073030	Crystalline Silica	14808-60-7	24	5.24E-03	EF	Average	<1%
5-27	SRCID35	Clinker Ship Loading equipped with dust collector	6.6	15.95	Ambient	0.73	17	_	330341	4879983	SPM	N/A-1	24	2.40E-02	EF	Average	<1%
5-27	SRCID35	Clinker Ship Loading equipped with dust collector			.						Crystalline Silica	14808-60-7	24	2.79E-03	EF	Average	<1%
5-28	SRCID36	Brick Saw K-4 equipped with dust collector Brick Saw K-4 equipped with dust collector	2.4	14.44	Ambient	0.46	0.1	_	330175	4880156	SPM Crystalline Silica	N/A-1 14808-60-7	24 24	9.90E-03 1.15E-03	EF EF	Average Average	<1% <1%
5-31	SRCID42	Coal Mill Dust Collector equipped with dust collector	23.6	15.96	65	1.372	50.3	_	330181	4880167	SPM	N/A-1	24	4.72E-01	EF	Average	2%
5-31	SRCID42	Coal Mill Dust Collector equipped with dust collector									Crystalline Silica	14808-60-7	24	5.50E-02	EF	Average	3%
5-32	SRCID43	Indirect Firing - Coal Silo equipped with passive fabric filter	1.4	19.81	75	0.3	34.4	_	330181	4880167	SPM	N/A-1	24	1.40E-02	EF	Average	<1%
5-32	SRCID43	Indirect Firing - Coal Silo equipped with passive fabric filter	4.4	40.04	7.5		04.4		000404	4000407	Crystalline Silica	14808-60-7	24	1.63E-03	EF	Average	<1%
5-33 5-33	SRCID44	Indirect Firing - Coke Silo equipped with passive fabric filter Indirect Firing - Coke Silo equipped with passive fabric filter	1.4	19.81	75	0.3	34.4	_	330181	4880167	SPM Crystalline Silica	N/A-1 14808-60-7	24 24	1.40E-02 1.63E-03	EF EF	Average Average	<1% <1%
5-34	SRCID45	Ind. Firing - Weigh Feeder equipped with dust collector	0.3	22.10	75	0.12	14.6	_	330181	4880167	SPM	N/A-1	24	2.50E-03	EF	Average	<1%
5-34	SRCID45	Ind. Firing - Weigh Feeder equipped with dust collector									Crystalline Silica	14808-60-7	24	2.91E-04	EF	Average	<1%
5-35	SRCID46	Ind. Firing - Weigh Feeder equipped with dust collector	0.3	22.10	75	0.12	14.6	_	330181	4880167	SPM	N/A-1	24	2.50E-03	EF	Average	<1%
5-35 5-36	SRCID46 SRCID47	Ind. Firing - Weigh Feeder equipped with dust collector Coal Handling equipped with dust collector	0.3	39.30	75	0.09	14.6	_	330206	4880169	Crystalline Silica SPM	14808-60-7 N/A-1	24 24	2.91E-04 9.00E-04	EF EF	Average Average	<1% <1%
5-36	SRCID47 SRCID47	Coal Handling equipped with dust collector Coal Handling equipped with dust collector	0.3	J8.3U	15	0.09	14.0	_	330200	4000109	Crystalline Silica	14808-60-7	24	9.00E-04 1.05E-04	EF	Average	<1%
5-37	SRCID48	Coal Handling equipped with dust collector	0.1	14.15	75	0.09	14.6	_	330201	4880174	SPM	N/A-1	24	9.00E-04	EF	Average	<1%
5-37	SRCID48	Coal Handling equipped with dust collector			1						Crystalline Silica	14808-60-7	24	1.05E-04	EF	Average	<1%
5-38	SRCID49	New Secondary Crusher equipped with dust collector	5.2	8.99	Ambient	0.858	14.6	_	330150	4879963	SPM Orange Asiliana Osiliana	N/A-1	24	1.56E-02	EF	Marginal	<1%
5-38 5-39	SRCID49 SRCID51	New Secondary Crusher equipped with dust collector Expansion - Limestone Storag e 105-1 equipped with dust collector	3.0	10.61	Ambient	0.6	27.7	_	330075	4880075	Crystalline Silica SPM	14808-60-7 N/A-1	24 24	1.81E-03 3.00E-02	EF EF	Marginal Average	<1% <1%
5-39	SRCID51 SRCID51	Expansion - Limestone Storag e 105-1 equipped with dust collector Expansion - Limestone Storag e 105-1 equipped with dust collector	3.0	10.01	Ambient	0.0	21.1	_	3300/5	40000/3	Crystalline Silica	14808-60-7		3.49E-03	EF	Average	<1%
0-00	OROIDOT	Expansion - Elinestone Otorag e 100-1 equipped with dust collector	1			I	L	L	L		Orystaline Ollica	1-000-00-1	47	0. 7 3L-03		Avelage	1 170

Table 2a Normal Source Summary Table

							Source Sum	mary Table									
					Source Paran	neters							Em	ission Data			
Source ID	Model Source I	D Source Description	Stack Volumetric Flow Rate [Am³/s]	Stack Velocity [m/s]	Stack Exit Gas Temperature [°C]	Stack Inner Diameter [m]	Stack Height Above Grade [m]	Stack Height Above Roof [m]		Source Location [Y Coordinate]	Contaminant	CAS No.	Averaging Period [hours]	Maximum Emission Rate [g/s]	Emission Estimating Technique	Emissions Data Quality	Percentage of Overall Emissions [%]
5-40	SRCID55	Expansion - Bucket Elev. Dedust. 105-5 equipped with dust collector	1.5	11.94	Ambient	0.4	11.9	-	330075	4880075	SPM	N/A-1	24	1.50E-02	EF	Average	<1%
5-40	SRCID55	Expansion - Bucket Elev. Dedust. 105-5 equipped with dust collector									Crystalline Silica	14808-60-7	24	1.75E-03	EF	Average	<1%
5-41	SRCID58	Blend Silo 5 equipped with dust collector Blend Silo 5 equipped with dust collector	2.5	10.52	80	0.55	29	_	329975	4880071	SPM Crystalline Silica	N/A-1 14808-60-7	24	2.50E-02 2.91E-03	EF EF	Average Average	<1% <1%
5-42	SRCID61	Lime addition silo equipped with dust collector	0.6	45.90	Ambient	0.12	20	2	330093	4880032	SPM	N/A-1	24	5.60E-03	EF	Average	<1%
5-42	SRCID61	Lime addition silo equipped with dust collector									Crystalline Silica	14808-60-7	24	6.52E-04	EF	Average	<1%
5-43	SRCID62	Pan conveyor equipped with dust collector Pan conveyor equipped with dust collector	3.3	16.68	Ambient	0.50	7	_	330176	4880168	SPM Crystalling Siling	N/A-1 14808-60-7	24	3.30E-02 3.84E-03	EF EF	Average	<1% <1%
5-43	SRCID63	Truck load dust collector 2 equipped with dust collector- South scale	0.9	13.30	80	0.3	15	_	329979	4880228	Crystalline Silica SPM	N/A-1	24	9.40E-03	EF	Average Average	<1%
5-44	SRCID63	Truck load dust collector 2 equipped with dust collector- South scale									Crystalline Silica	14808-60-7	24	1.09E-03	EF	Average	<1%
5-45	SRCID64	Truck load dust collector 4 equipped with dust collector - South scale	0.9	13.30	80	0.3	15	_	329979	4880228	SPM	N/A-1	24	9.40E-03	EF	Average	<1%
5-45 5-46	SRCID64 SRCID65	Truck load dust collector 4 equipped with dust collector - South scale Truck Load dust collector 3 equipped with dust collector - East	1.3	18.39	80	0.3	15	_	329979	4880228	Crystalline Silica SPM	14808-60-7 N/A-1	24	1.09E-03 1.30E-02	EF EF	Average Average	<1% <1%
5-46	SRCID65	Truck Load dust collector 3 equipped with dust collector - East	1.5	10.00	00	0.5	13		329919	4000220	Crystalline Silica	14808-60-7	24	1.51E-03	EF	Average	<1%
5-47	SRCID66	Expansion - Hopper Feedoweights equipped with dust collector	6.0	21.22	Ambient	0.6	30	_	330075	4880075	SPM	N/A	24	1.20E-01	EF	Average	<1%
5-47	SRCID66	Expansion - Hopper Feedoweights equipped with dust collector	0.0	20.20	400	0.70	45		000407	4000044	Crystalline Silica	14808-60-7	24	1.40E-02	EF	Average	<1%
5-48 5-48	SRCID67	Slag dryer equipped with dust collector Slag dryer equipped with dust collector	9.2	20.28	120	0.76	45		330127	4880214	SPM Crystalline Silica	N/A-1 14808-60-7	24	1.84E-01 2.14E-02	EF EF	Average Average	<1% 1%
5-49	SRCID68	#8 Mill Stack	10.4	8.47	95	1.25	18.3	_	330206	4880248	SPM	N/A-1	24	9.92E-02	EF	Marginal	<1%
5-49	SRCID68	#8 Mill Stack	0.4	40.45	Ab A bis t	0.000	440.40		000400	4000070	Crystalline Silica	14808-60-7	24	1.15E-02	EF	Marginal	<1%
5-50 5-50	SRCID69 SRCID69	Cement dome dust collector Cement dome dust collector	6.1	16.45	Above Ambient	0.689	110.49	_	330169	4880072	SPM Crystalline Silica	N/A-1 14808-60-7	24	1.23E-01 1.43E-02	EF EF	Average Average	<1% <1%
Clinker Trans	sfers																
6-1	CLINK1	Clinker Storage Hall Left (Src 60 & 62)	_	_	_	_	_	_	330140	4880175	SPM	N/A-1	24	3.82E-04	EF	Marginal	<1%
	CLINK1 CLINK2								330115	4880200	Crystalline Silica SPM	14808-60-7 N/A-1	24	2.62E-05 3.82E-04	EF EF	Marginal Marginal	<1% <1%
6-2	CLINK2	Clinker Storage Hall Middle (Src 60 & 62)	_	_	-	_	_	_	000110	1000200	Crystalline Silica	14808-60-7	24	2.62E-05	EF	Marginal	<1%
6-3	CLINK3	Clinker Storage Hall Right (Src 60 & 62)	_	_		_	_	_	330129	4880222	SPM	N/A-1	24	3.82E-04	EF	Marginal	<1%
	CLINK3								330057	4880109	Crystalline Silica SPM	14808-60-7 N/A-1	24	2.62E-05 3.82E-04	EF EF	Marginal Marginal	<1% <1%
6-4	VFUG11	Clinker Storage Hall East Right (Src 60 & 62)	_	_	_	_	_	_	330057	4000109	Crystalline Silica	14808-60-7	24	2.62E-05	EF	Marginal	<1%
6-5	VFUG12	Clinker Storage Hall East Left (Src 60 & 62)	_	_	_	_	_	_	330047	4880087	SPM	N/A-1	24	3.82E-04	EF	Marginal	<1%
0-5	VFUG12	Olimkor Otorage Fran East Echt (Ord Od & OZ)									Crystalline Silica	14808-60-7	24	2.62E-05	EF	Marginal	<1%
6-6	VFUG6	K3 Clinker Handling (Src 52) (Product drop into open conveyor C-11)	_	_	_	_	_	_	330060	4880274	SPM Crystalline Silica	N/A-1 14808-60-7	24	6.77E-03 4.64E-04	EF EF	Marginal Marginal	<1% <1%
0.7	VFUG8A	Oliston Communication C. O. (One 50) Oliston (Communication of Communication of Communicati							330181	4880218	SPM	N/A-1	24	6.77E-03	EF	Marginal	<1%
6-7	VFUG8A	Clinker Screening S-9 (Src 58) Clinker (Conveyor S-9 product drops)	_	_	_	_	_	_			Crystalline Silica	14808-60-7	24	4.64E-04	EF	Marginal	<1%
6-8	VFUG8B	Clinker Screening S-9 (Src 58) Weathered Clinker (Conveyor S-9 product drops)	_	_	_	_	_	_	330181	4880219	SPM Crustallina Siliaa	N/A-1 14808-60-7	24	7.81E-03 5.35E-04	EF EF	Marginal	<1% <1%
											Crystalline Silica SPM	N/A-1	24	6.77E-02	EF EF	Marginal Marginal	<1%
6-9	_	Outside Clinker Storage	_	_	_	_	_	_	_	_	Crystalline Silica	14808-60-7	24	4.64E-03	EF	Marginal	<1%
Supporting F	rocesses																
9-1		Maintenance Welding									SPM	N/A-1	24	6.17E-04	EF	Average	<1%
9-1		Maintenance Welding									Chromium Cobalt	7440-47-3 7440-48-4	24	2.01E-07 3.35E-08	EF EF	Average Average	<1% <1%
9-1		Maintenance Welding									Manganese	7440-46-4	24	3.46E-05	EF	Average	<1%
9-1		Maintenance Welding									Nickel		24, Annual	6.71E-08	EF	Average	<1%
9-1		Maintenance Welding									Iron		24, Annual	6.17E-04	EF	Average	<1%
9-1 9-1		Maintenance Welding Maintenance Welding									Calcium Carbonate Fluorides	1317-65-3 16984-48-8	24	6.17E-05 3.09E-05	EF EF	Average Average	100%
9-1	_	Maintenance Welding	_			_		_	_	_	Titanium Dioxide	13463-67-7		3.09E-05	EF	Average	100%
9-1	_	Maintenance Welding	_	_	_	-	_	-	_	_	Sodium Silicate	1344-09-8	24	3.09E-05	EF	Average	100%
9-1		Maintenance Welding									Potassium Silicate	1312-76-1	24	3.09E-05	EF	Average	100%
9-1 9-1		Maintenance Welding Maintenance Welding									Feldspar Silicon	68476-25-5 7440-21-3	24	6.17E-06 6.17E-06	EF EF	Average Average	100% <1%
9-1		Maintenance Welding								1	Ferric Oxide	1309-37-1	24	6.17E-06	EF	Average	100%
9-1		Maintenance Welding									Carboxymethyl cellulous, sodiun		24	6.17E-06	EF	Average	100%
9-1		Maintenance Welding									salt Crystalline Silica	9004-32-4 14808-60-7		6.17E-06	EF	Average	<1%
9-1		Maintenance Welding									Hydroxyethyl cellulous	9004-62-0	24	6.17E-06	EF	Average	100%
10-1	_	Comfort Heating	_	_	_	_	_	_	_	_	Nitrogen Oxides	10102-44-0	1, 24	4.91E-02	EF	Excellent	<1%

Notes: "V-ST" - Validated Source Test, "ST" - Source Test, "EF" - Emission Factor, "MB" Mass Balance, "EC" - Engineering Calculation Data Quality Categories: "Highest"; "Above-Average"; "Average"; and "Marginal" * Metallic iron

Table 2b TOC Source Summary Table

							Source Sumi	nary Table									
					Source Parar	neters							Eı	nission Data			
		D Source Description	Stack Volumetric Flow Rate [Am³/s]	Stack Velocity [m/s]	Stack Exit Gas Temperature [°C]	Stack Inner Diameter [m]	Stack Height Above Grade [m]	Stack Height Above Roof [m]		Source Location [Y Coordinate]	Contaminant	CAS No.	Averaging Period [hours]	Maximum Emission Rate [g/s]	Emission Estimating Technique	Emissions Data Quality	Percentage of Overall Emissions [%]
Quarry Opera	ations																
Q1	_	Blasting - Hole Drilling	_		_	_	_	_	_	_	SPM	N/A-1	24	1.56E-02	EF	Marginal	<1%
Q2											SPM	N/A-1	24	2.35E-02	EF	Average	<1%
	_	Blasting	_	_	_	_	_	_	_	_	Carbon Monoxide	630-08-0	1/2	3.78E+01	EF	Marginal	21%
		J. G.									Nitrogen Oxides	10102-44-0	1, 24	8.89E+00	EF	Marginal	4%
											Sulphur dioxide	7446-09-5	1, 24	1.11E+00	EF	Marginal	<1%
Q5	QUARRY5	Material transfers	_		_	_	_	_	328898	4880219	SPM	N/A-1	24	2.05E+00	EF	Average	8%
Raw Material	s Storage and T	ransfers															
1-1	VFUG4	Haul Truck dump into Primary Crusher	_	_	_	_	_	_	330207	4879840	SPM	N/A-1	24	1.85E-01	EF	Marginal	<1%
1-2	VFUG4A	S-2 to Crushed Limestone Pile	_	_	_	_	_	_	330081	4879923	SPM	N/A-1	24	4.62E-01	EF	Above Average	2%
2	SECOND	Secondary Crusher	_	_	_	_	_	_	330135	4879962	SPM	N/A-1	24	6.38E-03	EF	Average	<1%
3-1	COALSHIP	LSC and coke unloading from ship	_	_	_	_	_	_	329973	4879327	SPM	N/A-1	24	1.94E+00	EF	Average	8%
3-2	COALTD	LSC and coke shore pile outloading	_	_	_	_	_	_	329979	4879358	SPM	N/A-1	24	4.34E-02	EF	Average	<1%
3-3	GYPSHIP	Anhydride and crude gypsum unloading from ship	_	_	_	_	_	_	330127	4879622	SPM	N/A-1	24	2.09E+00	EF	Above Average	8%
3-4	GYPSUMTD	Anhydride and crude gypsum shore pile outloading	_	_	_	_	_	_	330127	4879654	SPM	N/A-1	24	9.68E-02	EF	Average	<1%
3-5	MISCDROP	Silica, iron, and and alumina additive drop to pile and drop to storage hall	_	_	_	_	_	_	330150	4880323	SPM	N/A-1	24	3.87E-01	EF	Average	2%
3-6	CKD	CKD drop to pile and outloading to sales	_	_	_	_	_	_	3329967	4879735	SPM	N/A-1	24	3.72E-01	EF	Average	2%
3-7	VFUG5	Fuel drop into feed hopper	_	_	_	_	_	_	330156	4880159	SPM	N/A-1	24	2.48E-02	EF	Average	<1%
Kilns																	
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	207.0	14.94	120	4.20	70.8	N/A	330054	4879945	SPM	N/A-1	24	1.08E+01	EF	Marginal	44%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Carbon Monoxide	630-08-0	1/2	1.41E+02	V-ST	Highest	79%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Nitrogen Oxides	10102-44-0	1, 24	2.02E+02	V-ST	Highest	93%
4-2	KILN4	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection									Sulphur dioxide	7446-09-5	1, 24	1.64E+02	V-ST	Highest	92%
4-4	KILN4_C	Kiln 4 Cooler with baghouse	128.9	14.20	120	3.40	38.0	N/A	330215	4880156	SPM	N/A-1	24	3.08E+00	EF	Marginal	12%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse	22.8	12.56	120	1.52	83.2	N/A	330099	4880073	SPM	N/A-1	24	4.56E-01	EF	Average	2%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse								j l	Carbon Monoxide	630-08-0	1/2	6.39E-01	V-ST	Highest	<1%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse								[Nitrogen Oxides	10102-44-0	1, 24	6.67E+00	V-ST	Highest	3%
4-5	KILN4_BP	Kiln 4 Bypass Stack with baghouse									Sulphur dioxide	7446-09-5	1, 24	1.37E+01	V-ST	Highest	8%

Table 2b TOC Source Summary Table

							Source Sumn	nary Table									
					Source Paran	neters							Er	nission Data			
Source ID	Model Source ID	Source Description	Stack Volumetric Flow Rate [Am³/s]	Stack Velocity [m/s]	Stack Exit Gas Temperature [°C]	Stack Inner Diameter [m]	Stack Height Above Grade [m]	Stack Height Above Roof [m]		Source Location [Y Coordinate]	Contaminant	CAS No.	Averaging Period [hours]	Maximum Emission Rate [g/s]	Emission Estimating Technique	Emissions Data Quality	Percentage of Overall Emissions [%]
Baghouses																	
5-1	SRCID3	#1 Mill Stack with Baghouse	20.2	31.75	65	0.9	51.2	24.2	330059	4880137	SPM	N/A-1	24	1.38E-01	EF	Marginal	<1%
5-2	SRCID4	#2 Mill Stack with Baghouse	18.7	29.39	65	0.9	51.2	24.2	330065	4880146	SPM	N/A-1	24	1.38E-01	EF	Marginal	<1%
5-3	SRCID5	#3 Mill Stack with Baghouse	20.2	31.75	85	0.9	51.2	24.2	330070	4880157	SPM	N/A-1	24	5.25E-02	EF	Marginal	<1%
5-4	SRCID6	#4 Mill Stack with Baghouse	20.2	31.75	85	0.9	51.2	24.2	330076	4880165	SPM	N/A-1	24	5.25E-02	EF	Marginal	<1%
5-5	SRCID7	#5 Mill Stack with Baghouse	30.8	20.01	82	1.4	45.7	18.7	330072	4880191	SPM	N/A-1	24	6.42E-02	EF	Marginal	<1%
5-6	SRCID8	#6 & #7 Mill Stack with Baghouse	60.7	39.43	85	1.4	45.7	18.7	330088	4880187	SPM	N/A-1	24	9.33E-02	EF	Marginal	<1%
5-7	SRCID11	Primary Crusher with Baghouse	3.2	19.26	Ambient	0.46	12	_	330210	4879837	SPM	N/A-1	24	7.64E-02	EF	Marginal	<1%
5-8	SRCID12	Hammermill equipped with dust collector	4.3	14.81	Ambient	0.608	24.7	_	330139	4879968	SPM	N/A-1	24	4.86E-02	EF	Marginal	<1%
5-9	SRCID13	Screen House equipped with dust collector	9.0	20.00	Ambient	0.757	24.7	_	330177	4880012	SPM	N/A-1	24	1.07E-02	EF	Marginal	<1%
5-10	SRCID14 SRCID15	Blend Silo 2 equipped with dust collector	0.9 6.6	7.16	80 80	0.40 0.67	36.6 36.6	_	329980.809 329959.116	4880076 4880070	SPM SPM	N/A-1	24	9.00E-03	EF EF	Average	<1%
5-11 5-12	SRCID16	Blend Silo 3 equipped with dust collector	4.5	18.72 14.71	80	0.67	36.6	_	329959.116	4880070	SPM	N/A-1 N/A-1	24 24	1.32E-01 4.50E-02	EF EF	Average	<1% <1%
5-12	SRCID17	Blend Silo 4(#3 Kiln Feed) equipped with dust collector Blend Silo 6 equipped with dust collector	5.2	26.48	80	0.02	36.6	_	329965.869	4880053	SPM	N/A-1	24	5.20E-02	EF	Average Average	<1%
5-15	SRCID19	Packhouse Truck #1 equipped with dust collector	0.4	8.29	90	0.254	8		329979	4880228	SPM	N/A-1	24	4.20E-02	EF	Average	<1%
5-16	SRCID20	Packhouse North Packer equipped with dust collector	5.2	18.48	50	0.598	15	_	329979	4880228	SPM	N/A-1	24	1.04E-01	EF EF	Average	<1%
5-17	SRCID21	Packhouse South Packer equipped with dust collector	2.9	14.77	50	0.50	13	5	329979	4880228	SPM	N/A-1	24	2.90E-02	EF	Average	<1%
5-18	SRCID22	Packhouse Masonary equipped with dust collector	1.2	16.98	50	0.30	35.3	2.3	330002	4880229	SPM	N/A-1	24	1.20E-02	EF	Average	<1%
5-19	SRCID23	Silo #4 equipped with dust collector	6.6	20.07	100	0.647	35.3	2.3	330022	4880230	SPM	N/A-1	24	1.32E-01	EF	Average	<1%
5-20	SRCID26	Dock Silo 1 equipped with dust collector	4.5	10.19	80	0.75	48.1	_	330229.865	4879868	SPM	N/A-1	24	4.50E-02	EF	Average	<1%
5-21	SRCID27	Dock Silo 2 equipped with dust collector	4.5	10.19	80	0.75	48.1	_	330238.514	4879883	SPM	N/A-1	24	4.50E-02	EF	Average	<1%
5-22	SRCID28	Dock Silo 3 equipped with dust collector	4.5	10.19	80	0.75	48.1	_	330244	4879892	SPM	N/A-1	24	4.50E-02	EF	Average	<1%
5-23	SRCID29	Dock Silo 4 equipped with dust collector	4.5	10.19	80	0.75	48.1	_	330248.061	4879898	SPM	N/A-1	24	4.50E-02	EF	Average	<1%
5-27	SRCID35	Clinker Ship Loading equipped with dust collector	6.6	15.95	Ambient	0.73	17	_	330341	4879983	SPM	N/A-1	24	2.40E-02	EF	Average	<1%
5-28	SRCID36	Brick Saw K-4 equipped with dust collector	2.4	14.44	Ambient	0.46	0.1	_	330175	4880156	SPM	N/A-1	24	9.90E-03	EF	Average	<1%
5-31	SRCID42	Coal Mill Dust Collector equipped with dust collector	23.6	15.96	65	1.372	50.3	_	330181	4880167	SPM	N/A-1	24	4.72E-01	EF	Average	2%
5-32	SRCID43	Indirect Firing - Coal Silo equipped with passive fabric filter	1.4	19.81	75	0.3	34.4	_	330181	4880167	SPM	N/A-1	24	1.40E-02	EF	Average	<1%
5-33	SRCID44	Indirect Firing - Coke Silo equipped with passive fabric filter	1.4	19.81	75	0.3	34.4	_	330181	4880167	SPM	N/A-1	24	1.40E-02	EF	Average	<1%
5-34	SRCID45	Ind. Firing - Weigh Feeder equipped with dust collector	0.3	22.10	75	0.12	14.6	_	330181	4880167	SPM	N/A-1	24	2.50E-03	EF	Average	<1%
5-35	SRCID46	Ind. Firing - Weigh Feeder equipped with dust collector	0.3	22.10	75	0.12	14.6	_	330181	4880167	SPM	N/A-1	24	2.50E-03	EF	Average	<1%
5-36	SRCID47	Coal Handling equipped with dust collector	0.3	39.30	75	0.09	14.6	_	330206	4880169	SPM SPM	N/A-1	24	9.00E-04	EF	Average	<1%
5-37 5-38	SRCID48	Coal Handling equipped with dust collector	0.1 5.2	14.15	75	0.09 0.858	14.6 14.6	_	330201	4880174	SPM	N/A-1	24 24	9.00E-04	EF EF	Average	<1%
5-38	SRCID49 SRCID51	New Secondary Crusher equipped with dust collector Expansion - Limestone Storag e 105-1 equipped with dust collector	3.0	8.99 10.61	Ambient Ambient	0.858	27.7		330150 330075	4879963 4880075	SPM	N/A-1 N/A-1	24	1.56E-02 3.00E-02	EF EF	Marginal	<1% <1%
5-39	SRCID51	Expansion - Elimestone Storag e 105-1 equipped with dust collector	1.5	11.94	Ambient	0.6	11.9	_	330075	4880075	SPM	N/A-1	24	1.50E-02	EF	Average Average	<1%
5-40	SRCID58	Blend Silo 5 equipped with dust collector	2.5	10.52	80	0.4	29		329975	4880073	SPM	N/A-1	24	2.50E-02	EF	Average	<1%
5-42	SRCID61	Lime addition silo equipped with dust collector	0.6	45.90	Ambient	0.12	20	2	330093	4880032	SPM	N/A-1	24	5.60E-03	EF EF	Average	<1%
5-43	SRCID62	Pan conveyor equipped with dust collector	3.3	16.68	Ambient	0.50	7	_	330176	4880168	SPM	N/A-1	24	3.30E-02	EF EF	Average	<1%
5-44	SRCID63	Truck load dust collector 2 equipped with dust collector- South scale	0.9	13.30	80	0.3	15		329979	4880228	SPM	N/A-1	24	9.40E-03	EF EF	Average	<1%
5-45	SRCID64	Truck load dust collector 4 equipped with dust collector - South scale	0.9	13.30	80	0.3	15	_	329979	4880228	SPM	N/A-1	24	9.40E-03	EF	Average	<1%
5-46	SRCID65	Truck Load dust collector 3 equipped with dust collector - East	1.3	18.39	80	0.3	15	_	329979	4880228	SPM	N/A-1	24	1.30E-02	EF	Average	<1%
5-47	SRCID66	Expansion - Hopper Feedoweights equipped with dust collector	6.0	21.22	Ambient	0.6	30	_	330075	4880075	SPM	N/A	24	1.20E-01	EF	Average	<1%
5-48	SRCID67	Slag dryer equipped with dust collector	9.2	20.28	120	0.76	45		330127	4880214	SPM	N/A-1	24	1.84E-01	EF	Average	<1%
5-49	SRCID68	#8 Mill Stack	10.4	8.47	95	1.25	18.3	_	330206	4880248	SPM	N/A-1	24	9.92E-02	EF	Marginal	<1%
5-50	SRCID69	Cement dome dust collector	6.1	16.45	Above Ambient	0.689	110.49	_	330169	4880072	SPM	N/A-1	24	1.23E-01	EF	Average	<1%
Clinker Trans	sfers				<u> </u>					<u> </u>		<u>.</u>				<u> </u>	
6-1		Clinker Storage Hall Left (Src 60 & 62)	_	_		_		_	330140	4880175	SPM	N/A-1	24	3.82E-04	EF	Marginal	<1%
6-2	CLINK2	Clinker Storage Hall Middle (Src 60 & 62)	_	_		_	_	_	330115	4880200	SPM	N/A-1	24	3.82E-04	EF	Marginal	<1%
6-3		Clinker Storage Hall Right (Src 60 & 62)		_		_		_	330129	4880222	SPM	N/A-1	24	3.82E-04	EF	Marginal	<1%
6-4		Clinker Storage Hall East Right (Src 60 & 62)	_	_		_		_	330057	4880109	SPM	N/A-1	24	3.82E-04	EF	Marginal	<1%
6-5	VFUG12	Clinker Storage Hall East Left (Src 60 & 62)		_		_	_		330047	4880087	SPM	N/A-1	24	3.82E-04	EF	Marginal	<1%
6-6	VFUG6	K3 Clinker Handling (Src 52) (Product drop into open conveyor C-11)				_			330060	4880274	SPM	N/A-1	24	6.77E-03	EF	Marginal	<1%
6-7	VFUG8A	Clinker Screening S-9 (Src 58) Clinker (Conveyor S-9 product drops) Clinker Screening S-9 (Src 58) viveathered Clinker (Conveyor S-9 product		_	 	_	_		330181	4880218	SPM	N/A-1	24	6.77E-03	EF	Marginal	<1%
6-8 6-9	VFUG8B	drone)	_	_	_	_			330181	4880219	SPM SPM	N/A-1 N/A-1	24 24	7.81E-03	EF EF	Marginal	<1%
6-9 Supporting P	Processes	Outside Clinker Storage	_	_	_	_	_	_	_	_	3PIVI	IN/A-T	<u> </u>	6.77E-02	EF	Marginal	<1%
9-1	Tocesses	Maintenance Welding	_	I _	T =	_	_	_	_		SPM	N/A-1	24	6.17E-04	EF	Average	<1%
10-1		Comfort Heating		_		_		_		_	Nitrogen Oxides	10102-44-0	1, 24	4.91E-02	EF	Excellent	<1%
		Source Test "ST" Source Test "SE" Emission Factor "MP" Mass Polance							_		THILLOGOTI ONIGES	10102-44-0	1, 44	7.01L-02	-!	FVOCIICLIT	-170

Notes: "V-ST" - Validated Source Test, "ST" - Source Test, "EF" - Emission Factor, "MB" Mass Balance, "EC" - Engineering Calculation

Data Quality Categories: "Highest"; "Above-Average"; "Average"; and "Marginal"

* Metallic iron

Table 3
Dispersion Modelling Input Summary Table

		Dispersion modelling input outlinary rable	
Relevant Section of the Regulation	Section Title	Summary of How the Approved Dispersion Model Was Used	Location of Supporting Documentation in ESDM Report
Section 6	Approved Dispersion Model	AERMOD v.19191 AERMAP v.18081 BPIP v.04274	Section 6.0
Section 8	Negligible Sources of Contaminants	Sources and contaminants that were considered negligible were explicitly identified, and therefore were not modelled in accordance with s.8 of O.Reg.419/05.	Section 3.0, Table 1
Section 9	Same Structure Contamination	Not applicable as the Facility is the only tenant occupying the building, and does not have a child care facility, health care facility, senior's residence, long-term care facility or an education facility located at the on-site.	N/A
Section 10	Operating Conditions	When applicable, all equipment was assumed to be operating at the maximum production rates, simultaneously.	Section 4.0, Table 4
Section 11	Source of Contaminant Emission Rates	The emission rate for each significant contaminant emitted from a significant source was estimated, the methodology for the calculation is documented in Table 2 - Source Summary Table.	Section 4.0, Table 2
Section 12	Combined Effect of Assumptions for Operating Conditions and Emission Rates	The Operating Conditions were estimated in accordance with s.10(1) 1 and s.11(1) 1 of O.Reg.419/05 and are therefore considered to result in the highest POI concentration that the Facility is capable of for each contaminant emitted.	Section 4.0
Section 13	Meteorological Conditions	Site-specific meteorology prvided by MECP under s.13 of O. Reg. 419/05	Section 6.0
Section 14	Area of Modelling Coverage (receptor locations)	Model coverage set to match MECP guidelines.	Section 6.0
Section 15	Stack Height for Certain New Sources of Contaminant	N/A	Section 6.0
Section 16	Terrain Data	MECP cdem_dem_031C	Section 6.0
Section 17	Averaging Periods	Maximum 1-hour and 24-hour emission rates were used in the AERMOD model to produce 1-hour and 24-hour modelled POI concentrations. For contaminants with 10-min, 0.5 hour, monthly and annual averaged POI Limits, the 1- hour or 24-hour modelled concentrations were converted to 10-min, 0.5 hour, monthly or annual concentrations using the conversion factors in the ADMGO.	Section 4.0

Table 4 Supplemental Dispersion Modelling Summary Table

							Modellin	g Source Data: O _l	pen Pit Sources	8				Emissi	on Data	
Modelling ID	Source ID(s)	Source Description	Source Type	Area [m²]	Average Release Height Above Base of Pit [m]	Length of X side of the Open Pit [m]	side of the	Pit Volume [m³]	Source X- Coordinate [m]	Source Y-Coordinate [m]	Angle [º]	Contaminant	CAS No.	OPENPIT Source Emission Rate [g/s]	OPENPIT Source Emission Rate as Inputted into AERMOD [g/m²-s]	Averaging Period [hours]
QUARRY5	Q5	Material transfers	Open Pit	292500	24	450	650	14040000	328898	4880219	25	SPM	N/A-1	2.05E+00	7.00E-06	24
												Crystalline Silica	14808-60-7	1.23E-01	4.19E-07	24

						Modell	ling Source Dat	a: Volume Source	es			Emission Dat	а	
Modelling ID	Source ID(s)	Source Description	Source Type	Release Height Above Grade [m]	Length of Side [m]	Volume Source Height [m]	Initial Lateral Dimension of Volume [m]	Initial Vertical Dimension of Volume [m]	Source X- Coordinate [m]	Source Y-Coordinate [m]	Contaminant	CAS No.	Maximum Emission Rate [g/s]	Averaging Period [hours]
VFUG4	1-1	Haul Truck dump into Primary Crusher	Volume	1.5	3.1	15.0	0.71	6.98	330207	4879840	SPM	N/A-1	1.85E-01	24
VFUG4											Crystalline Silica	14808-60-7	1.11E-02	24
VFUG4A	1-2	S-2 to Crushed Limestone Pile	Volume	13	1.0	13.0	0.23	0.47	330081	4879923	SPM	N/A-1	4.62E-01	24
VFUG4A											Crystalline Silica	14808-60-7	2.77E-02	24
SECOND	2	Secondary Crusher	Volume	8.5	15.0	17.0	3.49	0.47	330135	4879962	SPM	N/A-1	6.38E-03	24
SECOND											Crystalline Silica	14808-60-7	4.63E-04	24
COALSHIP	3-1	LSC and coke unloading from ship	Volume	13	1.0	5.0	0.23	0.47	329973	4879327	SPM	N/A-1	1.94E+00	24
COALSHIP											Crystalline Silica	14808-60-7	1.16E-01	24
COALTD	3-2	LSC and coke shore pile outloading	Volume	1.52	5.0	5.0	1.16	2.33	329979	4879358	SPM	N/A-1	4.34E-02	24
COALTD											Crystalline Silica	14808-60-7	2.60E-03	24
GYPSHIP	3-3	Anhydride and crude gypsum unloading from ship	Volume	13	1.0	5.0	0.23	0.47	330127	4879622	SPM	N/A-1	2.09E+00	24
GYPSHIP											Crystalline Silica	14808-60-7	1.25E-01	24
GYPSUMTD	3-4	Anhydride and crude gypsum shore pile outloading	Volume	1.52	5.0	5.0	1.16	2.33	330127	4879654	SPM	N/A-1	9.68E-02	24
GYPSUMTD											Crystalline Silica	14808-60-7	5.80E-03	24
MISCDROP	3-5	Silica, iron, and and alumina additive drop to pile and drop to storage hall	Volume	1.5	3.1	5.0	0.71	2.33	330150	4880323	SPM	N/A-1	3.87E-01	24
MISCDROP											Crystalline Silica	14808-60-7	2.32E-02	24
CKD	3-6	CKD drop to pile and outloading to sales	Volume	1.5	5.0	5.0	1.16	2.33	3329967	4879735	SPM	N/A-1	3.72E-01	24
CKD											Crystalline Silica	14808-60-7	2.23E-02	24
VFUG5	3-7	Fuel drop into feed hopper	Volume	1.5	3.1	5.0	0.71	2.33	330156	4880159	SPM	N/A-1	2.48E-02	24
VFUG5											Crystalline Silica	14808-60-7	1.49E-03	24
CLINK1	6-1	Clinker Storage Hall Left (Src 60 & 62)	Volume	13.5	25.0	27.0	5.81	12.56	330140	4880175	SPM	N/A-1	3.82E-04	24
CLINK1											Crystalline Silica	14808-60-7	2.62E-05	24
CLINK2	6-2	Clinker Storage Hall Middle (Src 60 & 62)	Volume	13.5	25.0	27.0	5.81	12.56	330115	4880200	SPM	N/A-1	3.82E-04	24
CLINK2											Crystalline Silica	14808-60-7	2.62E-05	24
CLINK3	6-3	Clinker Storage Hall Right (Src 60 & 62)	Volume	13.5	25.0	27.0	5.81	12.56	330129	4880222	SPM	N/A-1	3.82E-04	24
CLINK3											Crystalline Silica	14808-60-7	2.62E-05	24
VFUG11	6-4	Clinker Storage Hall East Right (Src 60 & 62)	Volume	13.5	25.0	27.0	5.81	12.56	330057	4880109	SPM	N/A-1	3.82E-04	24
VFUG11										100000	Crystalline Silica	14808-60-7	2.62E-05	24
VFUG12	6-5	Clinker Storage Hall East Left (Src 60 & 62)	Volume	13.5	25.0	27.0	5.81	12.56	330047	4880087	SPM	N/A-1	3.82E-04	24
VFUG12										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Crystalline Silica	14808-60-7	2.62E-05	24
VFUG6	6-6	K3 Clinker Handling (Src 52) (Product drop into open conveyor C-11)	Volume	7.5	16.0	15.0	3.72	6.98	330060	4880274	SPM	N/A-1	6.77E-03	24
VFUG6	0.7	015-1	1/-1	- 00	4.5	4.5	0.05	0.70	000404	1000010	Crystalline Silica	14808-60-7	4.64E-04	24
VFUG8A	6-7	Clinker Screening S-9 (Src 58) Clinker (Conveyor S-9 product drops)	Volume	22	1.5	1.5	0.35	0.70	330181	4880218	SPM	N/A-1	6.77E-03	24
VFUG8A							-				Crystalline Silica	14808-60-7	4.64E-04	24
VFUG8B	6-8	Clinker Screening S-9 (Src 58) Weathered Clinker (Conveyor S-9 product drops)	Volume	22	1.5	1.5	0.35	0.70	330181	4880219	SPM	N/A-1	7.81E-03	24
VFUG8B											Crystalline Silica	14808-60-7	5.35E-04	24

					Mode	Iling Source D	Data: Point Sou	ces			Emission I	Data		
	Source		Source	Stack		Stack Gas	Stack Gas		Source X-				Maximum	
Modelling ID	ID(s)	Source Description	Type	Height	Stack Volumetric	Exit Velocity	Exit	Stack Inner	Coordinate	Source Y-Coordinate [m]	Contaminant	CAS No.	Emission	Averaging
	10(3)		Турс	Above	Flow Rate [Am³/s]	[m/s]	Temperature	Diameter [m]	[m]	Source 1-coordinate [m]	Contaminant	CAS NO.	Rate [g/s]	Period [hours]
KILN4	4-2	Kiln 4 Stack with ESPs, SNCR ammonia injection, and lime injection	Point	Grade [m] 70.8	207.0	14.94	[K] 393.15	4.20	330054	4879945	SPM	N/A-1	6.21E+00	24
		, - , , , , , , , , , , , , , , , , , ,									Crystalline Silica	14808-60-7	7.24E-01	24
											Dioxins and Furans (TEQ)	N/A-4	1.81E-09	24
											Carbon Monoxide	630-08-0	2.22E+01	1/2
											Nitrogen Oxides	10102-44-0	1.09E+02	1, 24
											Sulphur dioxide	7446-09-5	1.22E+01	1, 24
											Ammonia	7664-41-7	7.19E+00	24
											Aluminum	7429-90-5	2.94E-01	24
											Ammonium	N/A-6	2.45E+00	24
											Arsenic	7440-38-2	2.94E-04	24
											Barium	7440-39-3	8.15E-03	24
											Beryllium	7440-41-7	1.49E-05	24
											Cadmium	7440-43-9	1.90E-04	24
											Calcium Oxide	1305-78-8	5.43E+00	24
											Chloride	N/A-5	1.54E+01	24
											Chromium Cobalt	7440-47-3 7440-48-4	1.77E-04	24
													1.23E-02	24 24
											Copper	7440-50-8	1.18E-01	
											Hydrogen Fluoride Hydrogen Chloride	7664-39-3 7647-01-0	2.04E-02 1.02E+01	24 24
											Iron	15438-31-0	3.85E-01	24
											Lead	7439-92-1	1.63E-02	24, 30-day
											Manganese	7439-96-5	1.05E-02	24, 30-day
											Mercury	7439-97-6	4.47E-02	24
											Nickel	7440-02-0	4.78E-03	24, Annual
											Nitrate	N/A-7	1.04E-01	24
											Phosphorus	7723-14-0	1.20E-01	24
											Potassium	7440-09-7	4.08E-01	24
											Selenium	7782-49-2	3.40E-03	24
											Silicon	7440-21-3	6.21E+00	24
											Sodium	7440-23-5	9.06E-01	24
											Sulfate	N/A-8	4.53E+00	24
											Sulfur trioxide	N/A-9	1.90E+00	24
											Tin	7440-31-5	1.23E-01	24
											Zinc	7440-66-6	1.22E-02	24
											C3 benzenes	N/A-10	5.89E-05	24
											C4 benzenes	N/A-11	1.36E-04	24
											Acenaphthylene	208-96-8	2.67E-03	24
											Benzaldehyde	100-52-7	5.43E-04	24
											Benzene	71-43-2	7.24E-02	24, Annual
											Benzo(a)pyrene	50-32-8	2.94E-06	24, Annual
											Carbon Dioxide	124-38-9	4.08E+04	24
											Fluoranthene	206-44-0	1.99E-04	24
											Fluorene	86-73-7 85-01-8	4.26E-04 9.06E-03	24 24
											Phenanthrene Pyrene	85-01-8 129-00-0	9.06E-03 9.96E-05	24
											Pyrene	1336-36-3	9.96E-05 1.76E-04	24
KILN4 C	4-4	Kiln 4 Cooler with baghouse	Point	38.0	128.9	14.20	393.15	3.40	330215	4880156	SPM	N/A-1	3.08E+00	24
INILINA_C	4-4	Mili 4 Coolei with pagnouse	FOILI	30.0	120.9	14.20	383.13	3.40	330213	4000100	Crystalline Silica	14808-60-7	3.08E+00 3.59E-01	24
			1	l							Crystalline Silica	14000-00-/	J 3.39E-01	∠4

					Mode	Ilina Source D	ata: Point Sou	rene			Emission [Nata		
			_	Stack	IVIOUE		Stack Gas	les			Lillission	Jala		
Modelling ID	Source	Source Description	Source	Height	Stack Volumetric	Stack Gas	Exit	Stack Inner	Source X-				Maximum	Averaging
3 :=	ID(s)		Type	Above	Flow Rate [Am³/s]	Exit Velocity		Diameter [m]	Coordinate	Source Y-Coordinate [m]	Contaminant	CAS No.	Emission	Period [hours]
				Grade [m]		[m/s]	[K]		[m]				Rate [g/s]	
KILN4_BP	4-5	Kiln 4 Bypass Stack with baghouse	Point	83.2	22.8	12.56	393.15	1.52	330099	4880073	SPM	N/A-1	4.56E-01	24
											Crystalline Silica	14808-60-7	5.31E-02	24
											Dioxins and Furans (TEQ)	N/A-4	6.13E-11	24
											Carbon Monoxide	630-08-0	1.33E-01	1/2
											Nitrogen Oxides	10102-44-0	1.48E+00	1, 24
											Sulphur dioxide Ammonia	7446-09-5 7664-41-7	2.47E-01 1.57E-03	1, 24 24
											Aluminum	7429-90-5	2.94E-01	24
											Ammonium	N/A-6	2.45E+00	24
											Arsenic	7440-38-2	8.98E-05	24
											Barium	7440-39-3	2.01E-02	24
											Beryllium	7440-41-7	1.01E-06	24
											Bismuth	7440-69-9	4.56E-01	24
											Cadmium	7440-43-9	4.58E-04	24
											Calcium Oxide	1305-78-8	7.67E-02	24
											Chloride	N/A-5	4.98E-02	24
											Chromium	7440-47-3	1.11E-03	24
											Cobalt	7440-48-4	9.40E-04	24
											Copper	7440-50-8	3.29E-03	24
											Hydrogen Fluoride	7664-39-3	2.42E-03	24
											Hydrogen Chloride	7647-01-0	2.17E-01	24
											Iron	15438-31-0	4.56E-01	24
											Lead	7439-92-1	2.73E-03	24, 30-day
											Magnesium	7439-95-4	4.56E-01	24
											Manganese	7439-96-5	2.90E-03	24
											Mercury	7439-97-6	1.03E-04	24
											Nickel	7440-02-0	4.92E-04	24, Annual
											Nitrate	N/A-7	1.04E-01	24
											Phosphorus Potassium	7723-14-0	8.92E-03	24 24
											Selenium	7440-09-7 7782-49-2	4.08E-01 4.53E-03	24
											Silicon	7440-21-3	4.55E-05 4.56E-01	24
											Sodium	7440-21-3	4.56E-01	24
											Sulfate	N/A-8	1.63E-01	24
											Sulfur trioxide	N/A-9	3.31E-01	24
											Tin	7440-31-5	6.23E-03	24
											Tungsten	7440-33-7	4.56E-01	24
											Zinc	7440-66-6	4.56E-01	24
											Acenaphthylene	208-96-8	7.19E-08	24
											Benzaldehyde	100-52-7	5.43E-04	24
											Benzene	71-43-2	1.48E-04	24, Annual
											Benzo(a)pyrene	50-32-8	2.34E-08	24, Annual
											C3 benzenes	N/A-10	5.89E-05	24
											C4 benzenes	N/A-11	1.36E-04	24
											Carbon Dioxide	124-38-9	4.08E+04	24
											Fluoranthene	206-44-0	1.35E-07	24
											Fluorene	86-73-7	2.80E-07	24
											Phenanthrene	85-01-8	5.19E-07	24
											Pyrene	129-00-0	1.19E-07	24
1 1	l										PCBs	1336-36-3	1.44E-07	24

					Mod	lelling Source	Data: Point Sou	urces			Emission	Data		
Modelling ID	Source ID(s)	Source Description	Source Type	Stack Height Above Grade [m]	Stack Volumetric Flow Rate [Am³/s]		Stack Gas Exit Temperature [K]	Stack Inner Diameter [m]	Source X- Coordinate [m]	Source Y-Coordinate [m]	Contaminant	CAS No.	Maximum Emission Rate [g/s]	Averaging Period [hours]
SRCID3	5-1	#1 Mill Stack with Baghouse	Point	51.2	20.2	31.8	338.15	0.90	330059	4880137	SPM	N/A-1	1.38E-01	24
SRCID4	5-2	#2 Mill Stack with Baghouse	Point	51.2	18.7	29.4	338.15	0.90	330065	4880146	Crystalline Silica SPM	14808-60-7 N/A-1	1.60E-02 1.38E-01	24 24
SRCID5	5-3	#3 Mill Stack with Baghouse	Point	51.2	20.2	31.8	358.15	0.90	330070	4880157	Crystalline Silica SPM	14808-60-7 N/A-1	1.60E-02 5.25E-02	24 24
SRCID6	5-4	#4 Mill Stack with Baghouse	Point	51.2	20.2	31.8	358.15	0.90	330076	4880165	Crystalline Silica SPM	14808-60-7 N/A-1	6.11E-03 5.25E-02	24 24
SRCID7	5-5	#5 Mill Stack with Baghouse	Point	45.7	30.8	20.0	355.15	1.40	330072	4880191	Crystalline Silica SPM	14808-60-7 N/A-1	6.11E-03 6.42E-02	24 24
SRCID8	5-6		Point	45.7	60.7	39.4	358.15	1.40	330088	4880187	Crystalline Silica SPM	14808-60-7 N/A-1	7.47E-03 9.33E-02	24 24
		#6 & #7 Mill Stack with Baghouse									Crystalline Silica	14808-60-7	1.09E-02	24
SRCID11	5-7	Primary Crusher with Baghouse	Point	12.0	3.2	19.3	Ambient	0.46	330210	4879837	SPM Crystalline Silica	N/A-1 14808-60-7	7.64E-02 8.90E-03	24 24
SRCID12	5-8	Hammermill equipped with dust collector	Point	24.7	4.3	14.8	Ambient	0.61	330139	4879968	SPM Crystalline Silica	N/A-1 14808-60-7	4.86E-02 5.66E-03	24 24
SRCID13	5-9	Screen House equipped with dust collector	Point	24.7	9.0	20.0	Ambient	0.76	330177	4880012	SPM Crystalline Silica	N/A-1 14808-60-7	1.07E-02 1.25E-03	24 24
SRCID14	5-10	Blend Silo 2 equipped with dust collector	Point	36.6	0.9	7.2	353.15	0.40	329980.809	4880076	SPM Crystalline Silica	N/A-1 14808-60-7	9.00E-03 1.05E-03	24 24
SRCID15	5-11	Blend Silo 3 equipped with dust collector	Point	36.6	6.6	18.7	353.15	0.67	329959.116	4880070	SPM	N/A-1	1.32E-01	24
SRCID16	5-12	Blend Silo 4(#3 Kiln Feed) equipped with dust collector	Point	36.6	4.5	14.7	353.15	0.62	329967.960	4880084	Crystalline Silica SPM	14808-60-7 N/A-1	1.54E-02 4.50E-02	24 24
SRCID17	5-13	Blend Silo 6 equipped with dust collector	Point	36.6	5.2	26.5	353.15	0.50	329965.869	4880053	Crystalline Silica SPM	14808-60-7 N/A-1	5.24E-03 5.20E-02	24 24
SRCID19	5-15	Packhouse Truck #1 equipped with dust collector	Point	8.0	0.4	8.3	363.15	0.25	329979	4880228	Crystalline Silica SPM	14808-60-7 N/A-1	6.06E-03 4.20E-03	24 24
SRCID20	5-16	Packhouse North Packer equipped with dust collector	Point	15.0	5.2	18.5	323.15	0.60	329979	4880228	Crystalline Silica SPM	14808-60-7 N/A-1	4.89E-04 1.04E-01	24 24
					-						Crystalline Silica	14808-60-7	1.21E-02	24
SRCID21	5-17	Packhouse South Packer equipped with dust collector	Point	13.0	2.9	14.8	323.15	0.50	329979	4880228	SPM Crystalline Silica	N/A-1 14808-60-7	2.90E-02 3.38E-03	24 24
SRCID22	5-18	Packhouse Masonary equipped with dust collector	Point	35.3	1.2	17.0	323.15	0.30	330002	4880229	SPM Crystalline Silica	N/A-1 14808-60-7	1.20E-02 1.40E-03	24 24
SRCID23	5-19	Silo #4 equipped with dust collector	Point	35.3	6.6	20.1	373.15	0.65	330022	4880230	SPM Crystalline Silica	N/A-1 14808-60-7	1.32E-01 1.54E-02	24 24
SRCID26	5-20	Dock Silo 1 equipped with dust collector	Point	48.1	4.5	10.2	353.15	0.75	330229.865	4879868	SPM Crystalline Silica	N/A-1 14808-60-7	4.50E-02 5.24E-03	24 24
SRCID27	5-21	Dock Silo 2 equipped with dust collector	Point	48.1	4.5	10.2	353.15	0.75	330238.514	4879883	SPM	N/A-1	4.50E-02	24
SRCID28	5-22	Dock Silo 3 equipped with dust collector	Point	48.1	4.5	10.2	353.15	0.75	330244	4879892	Crystalline Silica SPM	14808-60-7 N/A-1	5.24E-03 4.50E-02	24 24
SRCID29	5-23	Dock Silo 4 equipped with dust collector	Point	48.1	4.5	10.2	353.15	0.75	330248.061	4879898	Crystalline Silica SPM	14808-60-7 N/A-1	5.24E-03 4.50E-02	24 24
SRCID35	5-27	Clinker Ship Loading equipped with dust collector	Point	17.0	6.6	16.0	Ambient	0.73	330341	4879983	Crystalline Silica SPM	14808-60-7 N/A-1	5.24E-03 2.40E-02	24 24
SRCID36	5-28	Brick Saw K-4 equipped with dust collector	Point	0.1	2.4	14.4	Ambient	0.46	330175	4880156	Crystalline Silica SPM	14808-60-7 N/A-1	2.79E-03 9.90E-03	24 24
SRCID42	5-31	Coal Mill Dust Collector equipped with dust collector	Point	50.3	23.6	16.0	338.15	1.37	330181	4880167	Crystalline Silica SPM	14808-60-7 N/A-1	1.15E-03 4.72E-01	24
											Crystalline Silica	14808-60-7	5.50E-02	24
SRCID43	5-32	Indirect Firing - Coal Silo equipped with passive fabric filter	Point	34.4	1.4	19.8	348.15	0.30	330181	4880167	SPM Crystalline Silica	N/A-1 14808-60-7	1.40E-02 1.63E-03	24 24
SRCID44	5-33	Indirect Firing - Coke Silo equipped with passive fabric filter	Point	34.4	1.4	19.8	348.15	0.30	330181	4880167	SPM Crystalline Silica	N/A-2 14808-60-7	1.40E-02 1.63E-03	24 24
SRCID45	5-34	Ind. Firing - Weigh Feeder equipped with dust collector	Point	14.6	0.3	22.1	348.15	0.12	330181	4880167	SPM Crystalline Silica	N/A-3 14808-60-7	2.50E-03 2.91E-04	24 24
SRCID46	5-35	Ind. Firing - Weigh Feeder equipped with dust collector	Point	14.6	0.3	22.1	348.15	0.12	330181	4880167	SPM Crystalline Silica	N/A-4 14808-60-7	2.50E-03	24 24
SRCID47	5-36	Coal Handling equipped with dust collector	Point	14.6	0.3	39.3	348.15	0.09	330206	4880169	SPM	N/A-5	2.91E-04 9.00E-04	24
SRCID48	5-37	Coal Handling equipped with dust collector	Point	14.6	0.1	14.1	348.15	0.09	330201	4880174	Crystalline Silica SPM	14808-60-7 N/A-6	1.05E-04 9.00E-04	24 24
SRCID49	5-38	New Secondary Crusher equipped with dust collector	Point	14.6	5.2	9.0	Ambient	0.86	330150	4879963	Crystalline Silica SPM	14808-60-7 N/A-7	1.05E-04 1.56E-02	24 24
SRCID51	5-39	Expansion - Limestone Storag e 105-1 equipped with dust collector	Point	27.7	3.0	10.6	Ambient	0.60	330075	4880075	Crystalline Silica SPM	14808-60-7 N/A-8	1.81E-03 3.00E-02	24 24
SRCID55	5-40	Expansion - Bucket Elev. Dedust. 105-5 equipped with dust collector	Point	11.9	1.5	11.9	Ambient	0.40	330075	4880075	Crystalline Silica SPM	14808-60-7 N/A-9	3.49E-03 1.50E-02	24
											Crystalline Silica	14808-60-7	1.75E-03	24
SRCID58	5-41	Blend Silo 5 equipped with dust collector	Point	29.0	2.5	10.5	353.15	0.55	329975	4880071	SPM Crystalline Silica	N/A-10 14808-60-7	2.50E-02 2.91E-03	24
SRCID61	5-42	Lime addition silo equipped with dust collector	Point	20.0	0.6	45.9	Ambient	0.12	330093	4880032	SPM Crystalline Silica	N/A-11 14808-60-7	5.60E-03 6.52E-04	24 24
SRCID62	5-43	Pan conveyor equipped with dust collector	Point	7.0	3.3	16.7	Ambient	0.50	330176	4880168	SPM Crystalline Silica	N/A-12 14808-60-7	3.30E-02 3.84E-03	24 24

					Mod	elling Source D	Data: Point Sou	rces			Emission	Data		
Modelling ID	Source ID(s)	Source Description	Source Type	Stack Height Above Grade [m]	Stack Volumetric Flow Rate [Am³/s]	Stack Gas Exit Velocity [m/s]	Stack Gas Exit Temperature [K]	Stack Inner Diameter [m]	Source X- Coordinate [m]	Source Y-Coordinate [m]	Contaminant	CAS No.	Maximum Emission Rate [g/s]	Averaging
SRCID63	5-44	Truck load dust collector 2 equipped with dust collector- South scale	Point	15.0	0.9	13.3	353.15	0.30	329979	4880228	SPM	N/A-13	9.40E-03	24
											Crystalline Silica	14808-60-7	1.09E-03	24
SRCID64	5-45	Truck load dust collector 4 equipped with dust collector - South scale	Point	15.0	0.9	13.3	353.15	0.30	329979	4880228	SPM	N/A-14	9.40E-03	24
											Crystalline Silica	14808-60-7	1.09E-03	24
SRCID65	5-46	Truck Load dust collector 3 equipped with dust collector - East	Point	15.0	1.3	18.4	353.15	0.30	329979	4880228	SPM	N/A-15	1.30E-02	24
											Crystalline Silica	14808-60-7	1.51E-03	24
SRCID66	5-47	Expansion - Hopper Feedoweights equipped with dust collector	Point	30.0	6.0	21.2	Ambient	0.60	330075	4880075	SPM	N/A-16	1.20E-01	24
											Crystalline Silica	14808-60-7	1.40E-02	24
SRCID67	5-48	Slag dryer equipped with dust collector	Point	45.0	9.2	20.3	393.15	0.76	330127	4880214	SPM	N/A-17	1.84E-01	24
											Crystalline Silica	14808-60-7	2.14E-02	24
SRCID68	5-49	#8 Mill Stack	Point	18.3	10.4	8.5	368.15	1.25	330206	4880248	SPM	N/A-1	9.92E-02	24
										Ι	Crystalline Silica	14808-60-7	1.15E-02	24
SRCID69	5-50	Cement dome dust collector	Point	110.5	6.1	16.5	Above Ambient	0.69	330169	4880072	SPM	N/A-1	1.23E-01	24
											Crystalline Silica	14808-60-7	1.43E-02	24

Made by: LL Checked by: JJZ

Table 5a Emission Summary Table

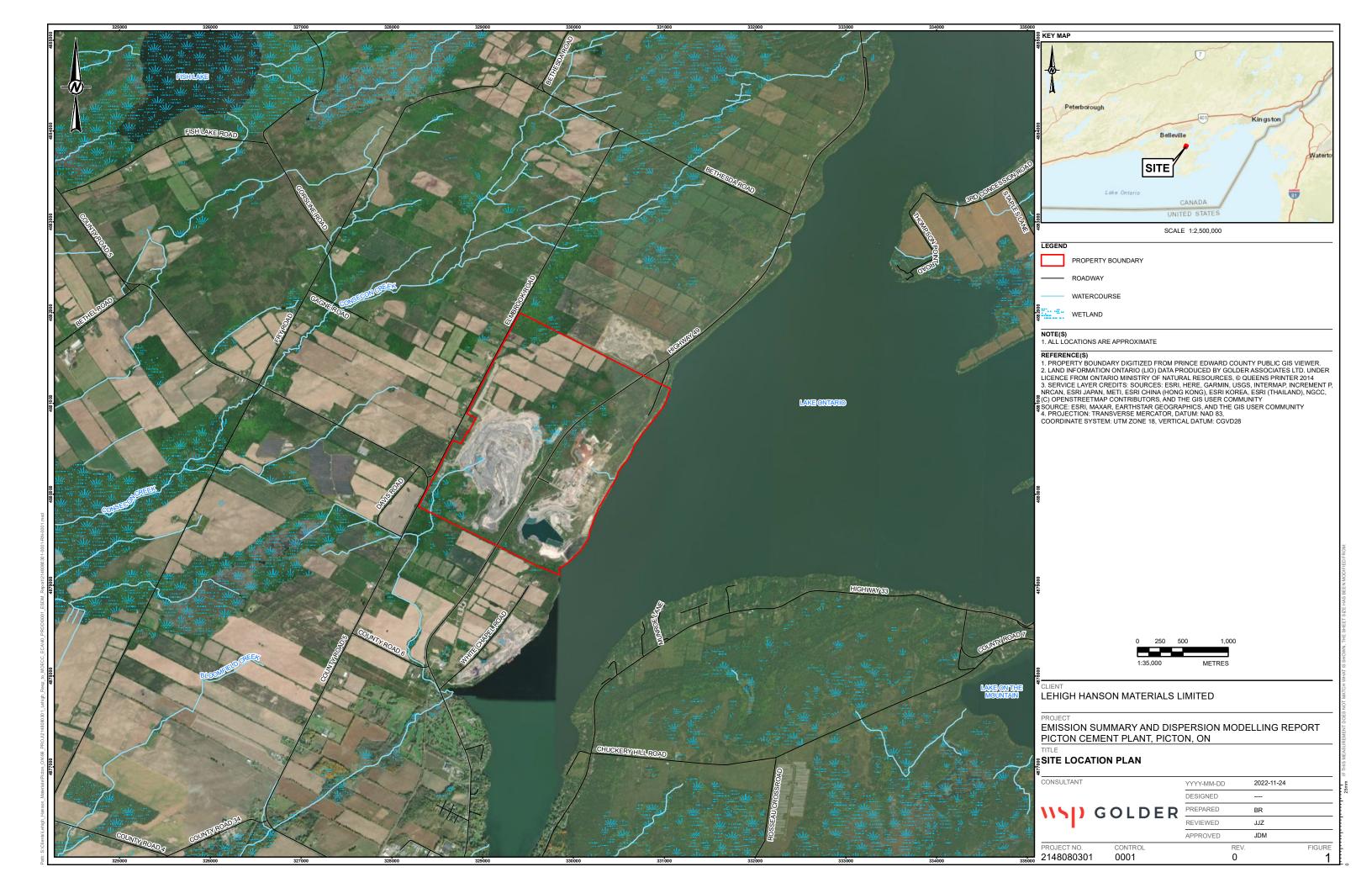
									Emission Summary Table					
		Total Facility		Maximum POI										
Contaminant	CAS No.	Emission Rate	Air Dispersion Model Used ⁽¹⁾	Concentration	Averaging	MECP POI	Limiting Effect	Schedule	Source	Benchmark	Percentage of MECP Limit [%]	Model Run Name	Notes	Version of ACB
	57.5	[g/s]	Model Used (1)	[µg/m³]	Period	Limit [µg/m³]	goc	551154415	554.55			inouoi itaii itaiiio		List (2)
Acenaphthylene	208-96-8	2.67E-03	AERMOD	8.54E-04	24	0.1			De Minimus	_	Below De Minimus	Unit Run		
Aluminum	7429-90-5	5.89E-01	AERMOD	1.09E+00	24	12	Health	Sch. 3	SL-JSL	B2	Below B2	Unit Run		v2
Ammonia	7664-41-7	7.19E+00	AERMOD	2.30E+00	24	100	Health	Sch. 3	Standard	B1	2%	Unit Run	ACB List (URT - Note 4, Table 4)	v2
Ammonium	14798-03-9	4.89E+00	AERMOD	9.05E+00	24	14.5			Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		
Arsenic	7440-38-2	3.84E-04	AERMOD	3.98E-04	24	0.3	Health	Sch. 3	Guideline	B1	<1%	Unit Run		v2
Barium	7440-39-3	2.82E-02	AERMOD	7.06E-02	24	10	Health	Sch. 3	Guideline	B1	<1%	Unit Run		v2
Benzaldehyde	100-52-7	1.09E-03	AERMOD	2.01E-03	24	2	Health	Sch. 3	SL-JSL	B2	Below B2	Unit Run		v2
Benzene	71-43-2	7.26E-02	AERMOD	2.54E-03	Annual	0.45	Health	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 19, Table 2, 3, URT - Note 4, Table 4)	v2
Benzene	71-43-2	7.26E-02	AERMOD	2.36E-02	24	100	_	Sch. 6	DAV	_	Below DAV	Unit Run		
Benzene	71-43-2	7.26E-02	AERMOD	2.54E-03	Annual	4.5	_	_	AAV	_	Below AAV	Unit Run		
Benzo(a)pyrene	50-32-8	2.97E-06	AERMOD	1.08E-07	Annual	0.00001	Health	Sch. 3	Standard	B1	1%	Unit Run	ACB List (Note 7, 19, Table 2, 3, URT - Note 4, Table 4)	v2
Benzo(a)pyrene	50-32-8	2.97E-06	AERMOD	1.02E-06	24	0.005	_	Sch. 6	DAV	_	Below DAV	Unit Run		
Benzo(a)pyrene	50-32-8	2.97E-06	AERMOD	1.08E-07	Annual	0.0001	_	_	AAV	_	Below AAV	Unit Run		
Beryllium	7440-41-7	1.60E-05	AERMOD	8.19E-06	24	0.01	Health	Sch. 3	Standard	B1	<1%	Unit Run		v2
Bismuth	7440-69-9	4.56E-01	AERMOD	1.54E+00	24	2.5	Health	Sch. 3	SL-JSL	B2	Below B2	Unit Run		v2
C3 benzenes	N/A-10	1.18E-04	AERMOD	2.18E-04	24	0.1	_	_	De Minimus	_	Below De Minimus	Unit Run		
C4 benzenes	N/A-11	2.72E-04	AERMOD	5.03E-04	24	0.1	 		De Minimus	_	Below De Minimus	Unit Run		
Cadmium	7440-43-9	6.49E-04	AERMOD	1.61E-03	24	0.025	Health	Sch. 3	Standard	B1	6%	Unit Run	ACB List (URT - Note 4, Table 4)	v2
Calcium Oxide	1305-78-8	5.51E+00	AERMOD	1.68E+00	24	10	Corrosion	Sch. 3	Standard	B1	17%	Calcium Oxide	Alexanter Training, Tubion,	
Carbon Dioxide	124-38-9	8.15E+04	AERMOD	1.26E+05	24	255800	Health	Sch. 3	SL-PA	B2	Below B2	Carbon Dioxide		v2
Carbon Monoxide	630-08-0	6.01E+01	AERMOD	3.44E+01	1/2	6000	Health	Sch. 3	Standard	B1	<1%	Carbon Monoxide	ACB List (Note 9)	v2 v2
	N/A-5	1.54E+01	AERMOD	5.09E+00	24		 						ACB LIST (Note 9)	VZ
Chloride						5.176			Previously Approved MAXGLC	_ 	Below Previously Approved MaxGLC	Unit Run	ACR (
Chromium	7440-47-3	1.28E-03	AERMOD	3.80E-03	24	0.5	Health	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 11a, URT - Note 4, Table 4)	v2
Cobalt	7440-48-4	1.33E-02	AERMOD	7.12E-03	24	0.1	Health	Sch. 3	Guideline	B1	7%	Unit Run		v2
Copper	7440-50-8	1.21E-01	AERMOD	4.87E-02	24	50	Health	Sch. 3	Standard	B1	<1%	Unit Run		v2
Crystalline Silica	14808-60-7	1.91E+00	AERMOD	2.41E+00	24	5	Health	Sch. 3	Guideline	B1	48%	Crystalline Silica		v2
Dioxins and Furans (TEQ)	N/A	1.87E-09	AERMOD	5.90E-10	24	0.0000001	Health	Sch. 3	Standard	B1	<1%	Dioxins and Furans (TEQ)	ACB List (Note 8, 8a, Table 1, URT - Note 4, Table 4)	v2
Fluoranthene	206-44-0	1.99E-04	AERMOD	6.41E-05	24	0.1			De Minimus	_	Below De Minimus	Unit Run		
Fluorene	86-73-7	4.26E-04	AERMOD	1.37E-04	24	0.1	_		De Minimus	_	Below De Minimus	Unit Run		
Hydrogen chloride	7647-01-0	1.04E+01	AERMOD	3.22E+00	24	20	Health	Sch. 3	Standard	B1	16%	Hydrogen chloride	ACB List (URT - Note 4, Table 4)	v2
Hydrogen Fluoride	7664-39-3	2.28E-02	AERMOD	1.47E-02	24	1.72	Vegetation	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 2, 20)	v2
Hydrogen Fluoride	7664-39-3	2.28E-02	AERMOD	5.73E-03	30-day	0.69	Vegetation	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 2, 20)	v2
Iron	7439-89-6	8.41E-01	AERMOD	1.40E+00	24	4	Health	Sch. 3	Standard	B1	35%	Iron		v2
Lead	7439-92-1	1.90E-02	AERMOD	1.45E-02	24	0.5	Health	Sch. 3	Standard	B1	3%	Unit Run	ACB List (Note 2, URT - Note 4, Table 4)	v2
Lead	7439-92-1	1.90E-02	AERMOD	5.64E-03	30-day	0.2	Health	Sch. 3	Standard	B1	3%	Unit Run	ACB List (Note 2, URT - Note 4, Table 4)	v2
Magnesium	7439-95-4	4.56E-01	AERMOD	1.54E+00	24	72	Health	_	SL-MD	B2	Below B2	Unit Run		
Manganese	7439-96-5	2.24E-02	AERMOD	1.60E-02	24	0.4	Health	Sch. 3	Standard	B1	4%	Unit Run	ACB List (URT - Note 4, Table 4)	v2
Mercury	7439-97-6	4.48E-02	AERMOD	1.46E-02	24	2	Health	Sch. 3	Standard	B1	<1%	Unit Run		v2
Nickel	7440-02-0	5.27E-03	AERMOD	3.08E-04	Annual	0.04	Health	Sch. 3	Standard	B1	<1%	Unit Run	ACB List (Note 19, Table 2, 3, URT - Note 4, Table 4)	v2
Nickel	7440-02-0	5.27E-03	AERMOD	3.19E-03	24	2	_	Sch. 6	DAV	_	Below DAV	Unit Run		
Nickel	7440-02-0	5.27E-03	AERMOD	3.08E-04	Annual	0.4	_	_	AAV	_	Below AAV	Unit Run		
Nitrate	14797-55-8	2.08E-01	AERMOD	3.85E-01	24	0.62	<u> </u>		Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		
Nitrogen Oxides	10102-44-0	1.19E+02	AERMOD	3.36E+01	24	200	Health	Sch. 3	Standard	B1	17%	Nitrogen Oxides	ACB List (Notes 2, 17)	v2
Nitrogen Oxides	10102-44-0	1.19E+02	AERMOD	1.42E+02	1	400	Health	Sch. 3	Standard	B1	36%	Nitrogen Oxides	ACB List (Notes 2, 17)	v2
PCBs	1336-36-3	1.76E-04	AERMOD	5.68E-05	24	0.15	Health	Sch. 3	Guideline	B1	<1%	Unit Run	ACB List (Note 8a)	v2
Phenanthrene	85-01-8	9.06E-03	AERMOD	2.90E-03	24	0.13	—	— — — — — — — — — — — — — — — — — — —	De Minimus	_	Below De Minimus	Unit Run	, too List (Hoto ou)	
	7723-14-0	1.29E-01	AERMOD	6.86E-02	24	0.5	Health	Sch. 3	SL-MD	B2	Below B2	Unit Run		
Phosphorus Potassium	7440-09-7	8.15E-01	AERMOD	1.51E+00	24	2.42	Health	Sch. 3	Previously Approved MAXGLC	— DZ	Below Previously Approved MaxGLC	Unit Run		v2
Pyrene	129-00-0	9.97E-05	AERMOD	3.22E-05	24	0.1	nealtri	— SCII. 3	De Minimus	_	Below De Minimus	Unit Run		٧٧
		7.92E-03	AERMOD	1.64E-02	24	10	— Health			— В1	<1%	Unit Run		v2
Selenium	7782-49-2							Sch. 3	Guideline					٧Z
Silicon	7440-21-3	6.67E+00	AERMOD	3.53E+00	24	27	Health	Sch. 3	SL-PA	B2	Below B2	Unit Run		
Sodium	7440-23-5	1.36E+00	AERMOD	1.83E+00	24	5.39			Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		
Sulfate	14808-79-8	4.69E+00	AERMOD	2.00E+00	24	2.36			Previously Approved MAXGLC	_	Below Previously Approved MaxGLC	Unit Run		
Sulfur trioxide	7446-11-9	2.23E+00	AERMOD	1.07E+00	24	5	Health	Sch. 3	SL-JSL	B2	Below B2	Sulfur trioxide		v2
Sulphur dioxide	7446-09-5	1.36E+01	AERMOD	3.84E+00	24	275	ealth & Vegetation	Sch. 3	Standard	B1	1%	Sulphur dioxide	ACB List (Effective until July 1, 2023, Note 2, URT - Note 4, Table 4)	v2
Sulphur dioxide	7446-09-5	1.36E+01	AERMOD	1.61E+01	1	690	ealth & Vegetation	Sch. 3	Standard	B1	2%	Sulphur dioxide	ACB List (Effective until July 1, 2023, Note 2, URT - Note 4, Table 4)	v2
SPM	N/A	2.01E+01	AERMOD	3.52E+01	24	120	Visibility	Sch. 3	Standard	B1	29%	SPM		v2
Tin	7440-31-5	1.29E-01	AERMOD	6.03E-02	24	10	Health	Sch. 3	Standard	B1	<1%	Unit Run		
Tungsten	7440-33-7	4.56E-01	AERMOD	1.54E+00	24	5	Health	_	SL-JSL	B2	Below B2	Unit Run		
Zinc	7440-66-6	4.68E-01	AERMOD	1.55E+00	24	120	Particulate	Sch. 3	Standard	B1	1%	Unit Run		

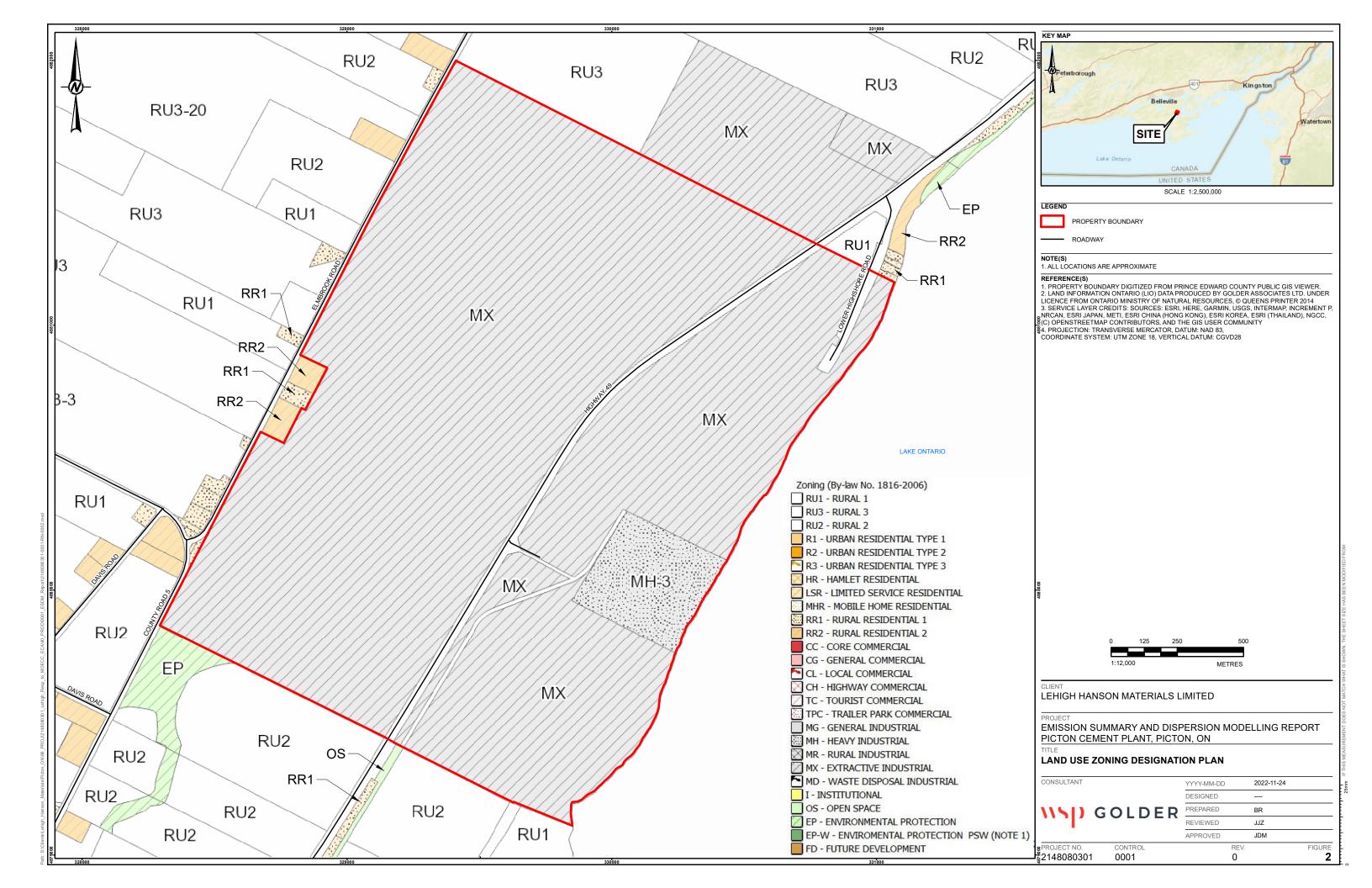
Notes:

^{1.} AERMOD v.19191 was used for all contaminants

^{2.} v2 = Version 2.0 - April 2018

^{3. &}quot;SL-JSL" = Screening Limit - Jurisdictional Screening Limit, "SL-MD" = Screening Limit, "SL-MD" = Screening Limit - Ministry-derived, "SL-PA" = Screening Limit - Previously Approved MAXGLC" = Previously Approved Limit using the Maximum Ground Level Concentration Assessment submitted with the ECA Amendment.


Table 5b Emission Summary Table


									minooron cummun, rubic					
Contaminant	CAS No.	Total Facility Emission Rate [g/s]	Air Dispersion Model Used ⁽¹⁾	Maximum POI Concentration [μg/m³]	Averaging Period	MECP POI Limit [μg/m³]	Limiting Effect	Schedule	Source	Benchmark	Percentage of MECP Limit [%]	Model Run Name	Notes	Version of ACB List ⁽²⁾
Carbon Monoxide	630-08-0	1.79E+02	AERMOD	2.18E+02	1/2	6000	Health	Sch. 3	Standard	B1	4%	Carbon Monoxide	ACB List (Note 9)	v2
Nitrogen Oxides	10102-44-0	2.17E+02	AERMOD	6.61E+01	24	200	Health	Sch. 3	Standard	B1	33%	Nitrogen Oxides	ACB List (Notes 2, 17)	v2
Nitrogen Oxides	10102-44-0	2.17E+02	AERMOD	2.72E+02	1	400	Health	Sch. 3	Standard	B1	68%	Nitrogen Oxides	ACB List (Notes 2, 17)	v2
Sulphur dioxide	7446-09-5	1.79E+02	AERMOD	6.23E+01	24	275	Health & Vegetation	Sch. 3	Standard	B1	23%	Sulphur dioxide	(Effective until July 1, 2023, Note 2, URT - Note 4	v2
Sulphur dioxide	7446-09-5	1.79E+02	AERMOD	2.40E+02	1	690	Health & Vegetation	Sch. 3	Standard	B1	35%	Sulphur dioxide	(Effective until July 1, 2023, Note 2, URT - Note 4	v2
SPM	N/A	2.54E+01	AERMOD	3.52E+01	24	120	Visibility	Sch. 3	Standard	B1	29%	SPM		v2

Notes:

1. AERMOD v.19191 was used for all compounds

2. v2 = Version 2.0 - April 2018



Date: June 2022 Project: 22515826 **Golder**

SIMPLIFIED PROCESS FLOW DIAGRAM Lehigh Hanson Picton Plant Picton, Ontario

FIGURE 3a

NOTES:

This schematic represents the major processes taking place at the Facility. Simple processes such as maintenance activities have not been represented.

LEGEND

→	Material Flow
	Emissions Release through Process Area

Process Area Name	Reference Figure
Quarry operations	3b
LSC, Coke & ALCF materials - material handling	3c
Raw materials – materials handling	3d
Raw mills	3d
Kiln 4	3e
Clinker storage & transfer	3e
Cement mills	3f
Finished cement/clinker	3f

Active\2016\3 Pro\1670431 Lehigh Air Compliance Picton\Phase 1000 - ESDM Update and Noise Screening

Date: June 2022 Project: 22515826 **Golder**

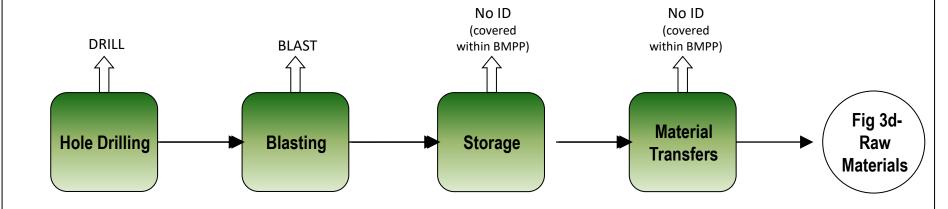
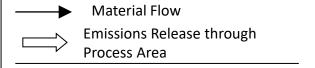

PROCESS FLOW DIAGRAM – Quarry Operations Lehigh Hanson Picton Plant Picton, Ontario

FIGURE 3b

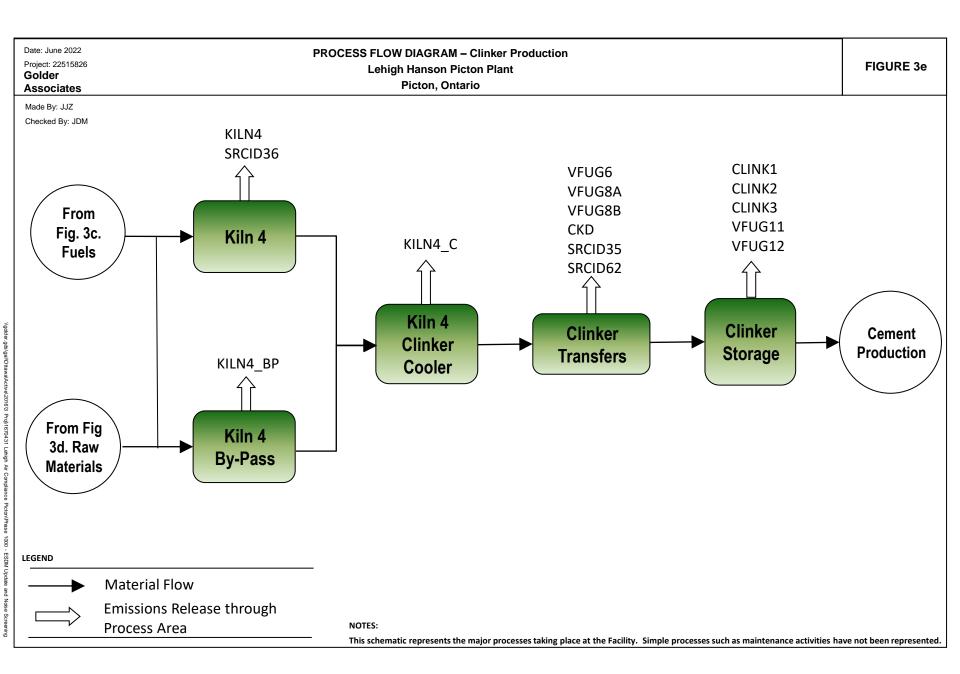
Associates

Made By: JJZ

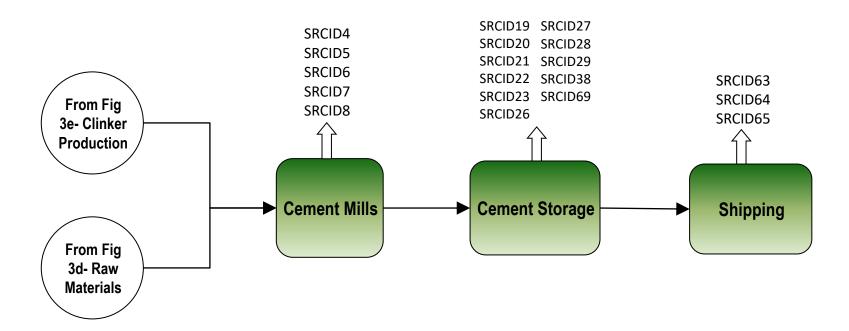

Checked By: JDM

NOTES:

This schematic represents the major processes taking place at the Facility. Simple processes such as maintenance activities have not been represented.

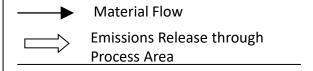

LEGEND

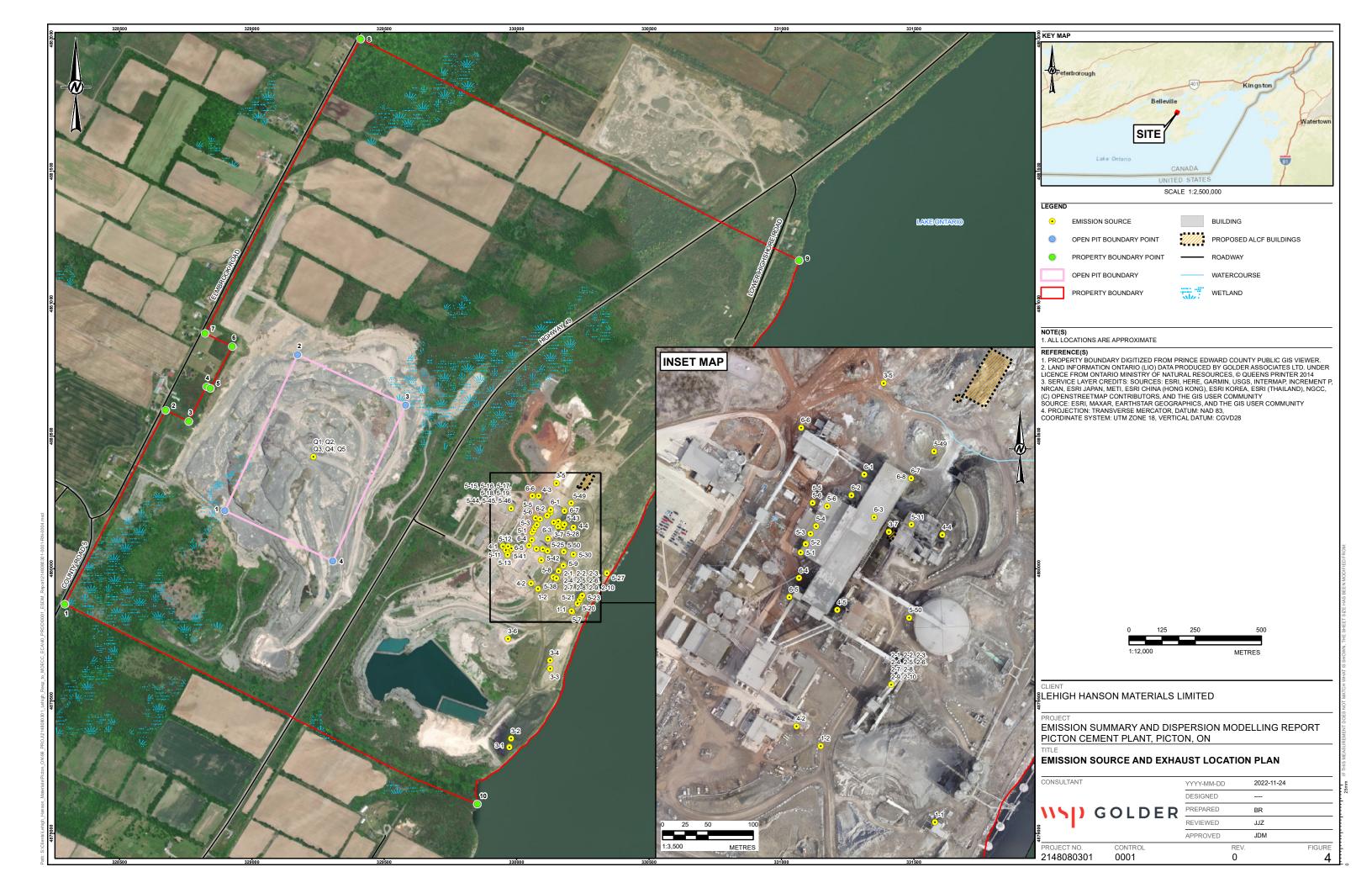
tive\2016\3 Pro\1670431 Lehigh Air Compliance Picton\Phase 1000 - ESDM Update and Noise Screening

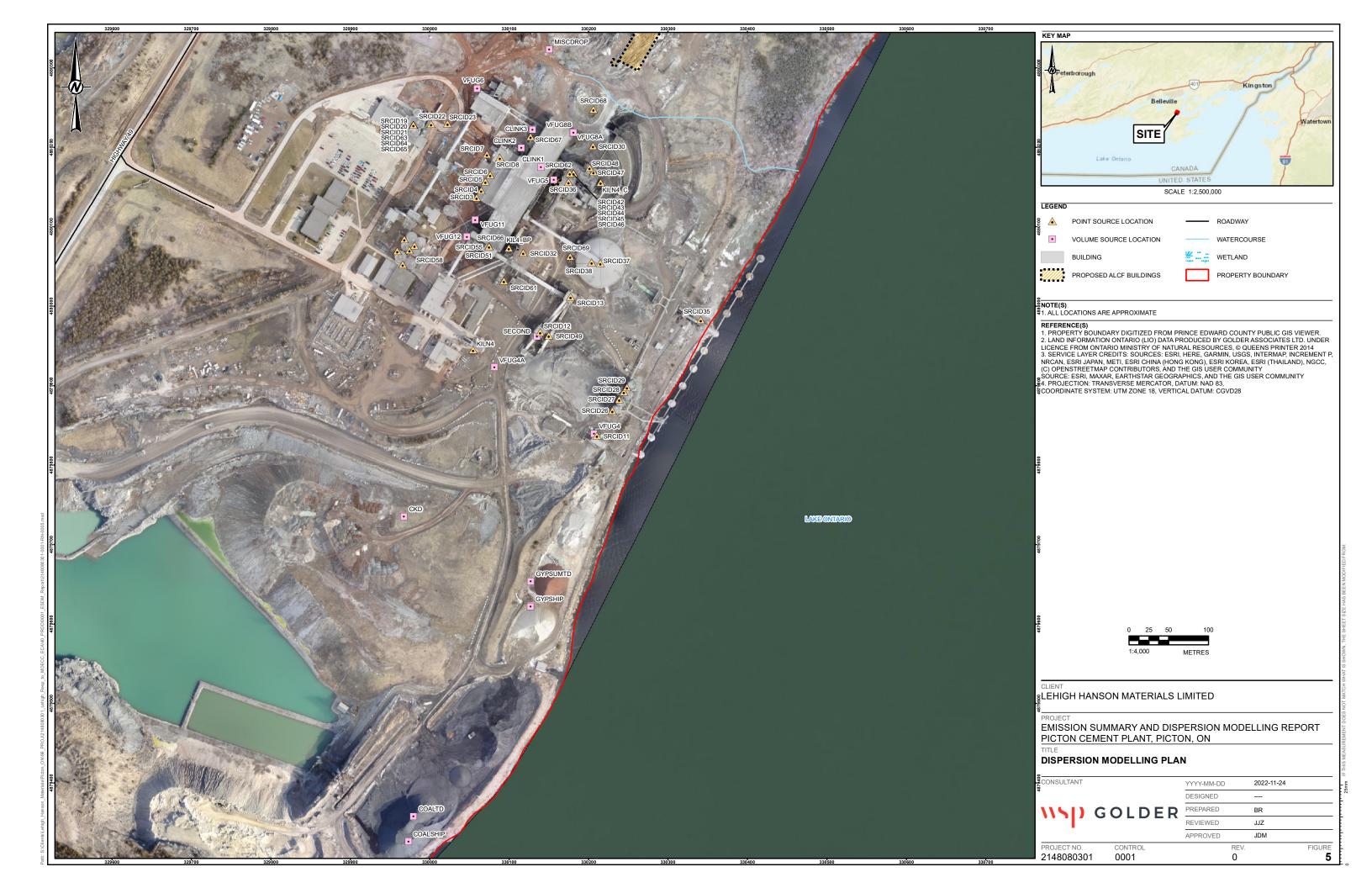


PROCESS FLOW DIAGRAM – Cement Production Lehigh Hanson Picton Plant Picton, Ontario

FIGURE 3f


Made By: JJZ Checked By: JDM


NOTES:


This schematic represents the major processes taking place at the Facility. Simple processes such as maintenance activities have not been represented.

LEGEND

el2016/3 Prol/1670431 Lehigh Air Compliance Picton\Phase 1000 - ESDM Update and Noise Screening

APPENDIX A

Modification Log

WSD GOLDER APPENDIX A - MODIFICATION LOG

The following table contains a summary of the changes that the ESDM Report has undergone since Version 1.0 of the ESDM Report completed in October 2017. The assessments provided in each respective ESDM Report Version demonstrate the Facility's compliance with the Performance Limits outlined in s.3.2.1 and s.3.2.2 of the Facility's ECA Number 0073-BHGQHC and therefore this Modification Log satisfies Conditions 4.1(b) and 4.1(c) of the ECA.

The ECA defines a "*Modification*" to be "any construction, alteration, extension or replacement of any plant, structure, equipment, apparatus, mechanism or thing, or alteration of a process rate of production at the Facility that may discharge or alter the rate or manner of discharge of a Compound of Concern to the air". This Modification Log may contain ESDM Report changes that do not fit this definition. Only those changes which meet this definition are required to be documented in the Written Summary required by Conditions 4.3 and 5.1 of the ECA.

ESDM Report Version	Description of Change	Emission Summary and Dispersion Modelling Report Changes	Does this Modification Meet the Definition of a "Modification" as defined by the ECA (i.e. must be included in the Annual Written Summary)
1.1	Refined emission inventory at the request of the MECP to use AP-42 emission factors from the Kilns, raw mills and primary and secondary crusher and CEMS data where applicable; accurate as of December 2018.	Emission inventory and model results documented in Table 2 and Tabled revised accordingly.	Yes
1.1	Updated AERMOD model to v.16216R and with site-specific meteorology; accurate as of December 2018	rabica revised accordingly.	
1.1	Included an assessment of transitional operating conditions; accurate as of March 2019	Appendix G added to the ESDM report	No
1.2	ESP 9 Flow Optimization modification – Neundorfer project	N/A	No
1.2	Revised emission rates based on 2019 Continuous Emissions Monitoring System (CEMS) data for the Kiln 4 Bypass stack.	Table 2b and Table 5b added to ESDM Report. Transitional Operating Condition SO ₂ is now the highest POI Concentration.	No
1.3	Updated AERMOD model to v.19191 and with site-specific meteorology; accurate as of December 2020.		Yes
	Revised TOC assessment to include update of 2020 CEMS data for nitrogen oxides and sulphur dioxide.	Emission inventory and model results documented in Table 2 and	
1.3	Refined PM10 and crystalline silica emissions from QUARRY5, VFUG4 and VFUG4A, COALSHIP and COALGYP, COALTD and GYPTD, MISCDROP, CKD and VFUG5.	Table 5 accordingly	No

Project No. 2148080301

1/2

WSD GOLDER APPENDIX A - MODIFICATION LOG

ESDM Report Version	Description of Change	Emission Summary and Dispersion Modelling Report Changes	Does this Modification Meet the Definition of a "Modification" as defined by the ECA (i.e. must be included in the Annual Written Summary)
1.3	Updated source testing emission rates, where applicable on Kiln 4 and Kiln 4 Bypass		No
1.3	Removed the following compounds from Kiln 3 as it did not operate in 2020: Ammonium, Chloride, Nitrate, Potassium, Sodium and Sulfate.		No
1.3	■ Lime injection was trialed on Kiln 4 but this did not change the emission estimating methods or the modelling directly.	N/A - No changes to emission estimates or modelling	Yes
1.4	Revised TOC assessment to include update of 2021 CEMS data for carbon monoxide, nitrogen oxides and sulphur dioxide.	Emission inventory and model results documented in Table 2 and Table 5 accordingly	No
	Updated source testing emission rates, where applicable on Kiln 4 and Kiln 4 Bypass		No
	Added phosphorus and tin as contaminants from the updated source testing on Kiln 4 and Kiln 4 bypass		No
	Removed baghouses associated with the clinker dome that were decommissioned in 2021. Sources 5-24,25,29,30 (SRCID 30,32,37,38)		Yes
	Added ammonia injection control on Kiln 4 including emissions of ammonia slip.		Yes
2.0	Assessed the use of alternative low-carbon fuels to fuel the process kiln	Emission inventory and model results documented in Table 2 and Table 5 accordingly	Yes
2.0	Added magnesium and tungsten as contaminants from the ALCF assessment		No
2.0	Removed sources associated with Kiln 3 that does not operate Sources 4-1, 4-3, 5-15, 5-26 (SRCID KILN3, KILN3_C, 18, 33		Yes
2.0	Added a dust collector source associated with the cement dome conversion project Source 5-50 (SRCID69)		Yes

Project No. 2148080301

2/2

APPENDIX B

Emission Rate Calculations

Source Source ID Q1 Blasting - Hole Drilling Description Process Rock and stone are loosened by drilling and blasting the quarry face. Blasting occurs 2 days per week at 2:00 pm. There are 21 drill holes per blast. All holes are drilled for 1.5 days with 10-hour work shift per day. Blast Description hole drilling is currently managed following requirements under the Aggregate Resources Act. All BMPs are currently in place. Operating Scenario Wet drill is operating continuously for a 10-hour shift. Limitations Drilling cannot occur simultaneously with blasting **EMISSION CALCULATION Drilling Details** 21 0.55 hour/hole Quantity Blasted 14000 tonnes per blast Drill Holes Per Blast Drilling Time: Methodology: US EPA AP-42 Emission Factor Uncontrolled Emission Factor **US EPA** MOECC **Emission** JS EPA AP-42 Section 11.19.2 - Crushed Stone Processing Quality Quality Source ID CAS Controls Contaminant Source Factor¹ and Pulverized Mineral Processing (8/04) Source: Rating Rating [kg/Mg] SPM None 4.00E-05 Q-1 Wet Drilling N/A-1 Е Marginal Percent of Crystalline Silica in PM1 13.7% 1 - Emission factors for PM10 factor Reference: AWMA - PM4 Crystalline Silica Emission Factors and Ambient

Calculation Formula

Emission Rate [g/s] = Emission Factor [kg/Mg] x Activity Rate [Mg/blast] x 1000 [g/kg] x Time Factor [blasts/drilling hours] x 1/3600 [hrs/second]

Crystalline Silica Emission Rate = PM10 Emission Rate [g/s] X % Crystalline Silica in PM 10

Sample Calculation:												
Emission Rate [g/s] = 0.000040	kg	14,000	Mg	1000	g	1	blast	1	drilling hr	1.56E-02	g	
	Mg		blast		kg	10	drilling hrs/day	3600	seconds		s	
·							·					-
Crystalline Silica Emission Rate [g/s] =	1.56E-02	g	13.70%	2.13E-03	g	Ì						
		s			s	1						
'						•						

Source ID	Source	Contaminant	CAS	Emission Factor [kg/Mg]	Emission Rate [g/s]
	Wet Drilling	SPM	N/A-1	4.00E-05	1.56E-02
Q-1	Wet Drilling	PM10		4.00E-05	1.56E-02
Q-1	Wet Drilling	Crystalline Silica	14808-60-7	·	2.13E-03

Concentrations at Aggregate-Producing Sources in California (Richards et al, 2012)

^{*}maximum drilling time per day is 10 hours (7 am to 5 pm)

Source ID Q2 Blasting

Process Description

Rock and stone are loosened by drilling and blasting the quarry face. Blasting occurs 2 days per week at 2:00 pm. There are 2 blasts per day on days that have blasting. Blasting is managed following requirements under the Aggregate Resources Act. All BMPs are currently in place

Operating Scenario

Blasting occurs for 10 minutes, on 2 occasions between 2-3pm, 2 days a week. The SPM emissions are estimated to occur over a 24hour averaging period for comparison with the 24-hr standard. The emissions of Carbon Monoxide, Nitrogen Oxides, and Sulphur Dioxide from the blast are estimated to occur over a 1-hr averaging period for comparison with the 1-hr standards. These 1-hr averaged emission rates are conservative when used in modelling for the 24hr averaging period.

Blasting cannot occur simultaneously with drilling, or truck hauling from quarry face to processing area.

EMISSION CALCULATION

Blasting Details

2 tonnes per blast Explosive usage

600 seconds Blast Duration

Horizontal Area [m²]: 277.00

Methodology:	US EPA AP-42 Emission Factors
	US EPA AP-42 Section 11.9 Western Surface Coal Mining (10/98)
Source:	US EPA AP-42 Section 13.3 Explosives Detonation
	-

Percent of Crystalline Silica in PM10 = 13.7%

Reference: AWMA - PM4 Crystalline Silica Emission Factors and Ambient

Concentrations at Aggregate-Producing Sources in California (Richards et al, 2012)

Particle Size Distribution

Particle Size [µm]	Cumulative %
Farticle Size [µiii]	Particle Distribution
SPM	_
PM10	50%

			Uncontroll	ed Emission Fa	actor			
Source ID	Source	Contaminant	CAS	Controls	Emission Factor	Emission Factor Units	US EPA Quality Rating	MOECC Quality Rating
		SPM ¹	N/A-1	None	1.01	kg/blast	С	Average
Q-2	Blasting	Carbon Monoxide	630-08-0	None	34	kg/Mg	D	Marginal
Q-2	Diasting	Nitrogen Oxides	10102-44-0	None	8	kg/Mg	D	Marginal
		Sulphur Diovide	7446 00 5	None	1	ka/Ma	D	Marginal

^{1 -} SPM Emission factor based on EF [kg/blast] = 0.00022 (A)^{1.5}, where A = horizontal area (m²)

Calculation Formula

SPM Emission Rate [g/s] = Emission Factor [kg/blast] x Activity Rate [blast/second] x 1000 [g/kg] x time weighted conversion

CO/NO2/SO2 Emission Rate [g/s] = Emission Factor [kg/Mg] x Explosive usage [Mg/blast] x Activity Rate [blast/second] x 1000 [g/kg] x time weighted conversion

PM10 Emission Rate = SPM Emission Rate [g/s] x Cumulative % Particle Distribution of PM10

Crystalline Silica Emission Rate = PM10 Emission Rate [g/s] X % Crysalline Silica in PM 10

SPM Emission Rate [g/s] =	1.01	kq	2	blast	1000	a	1 1	hr	2.35E-02	a	1	
or w Emission rate [g/s] =	1.01	blast	24	hr	1000	kg	3600		2.002-02	9	1	
· ·		Diasi	24	""		Ng	3000	S			1	
CO Emission Rate [g/s] [1] =	34	kg	2	Ma	2	blast	1000	а	l 1	hr	3.78E+01	а
[3, -]		Mg		blast	1	hr		kg	3600	s		s
·												
PM10 Emission Rate [g/s] =	2.35E-02	g	50.00%	1.17E-02	g							
		s			s							
Crystalline Silica Emission Rate [g/s] =	1.17E-02	_	40.700/	1.61E-03	_							
Crystalline Silica Emission Rate id/si = i	1.17E-02	g	13.70%	1.61E-03	g							

Source	Contaminant	CAS	Emission [kg/blast]	Emission [kg/Mg]	Emission [g/s]
	SPM	N/A-1	1.01	_	2.35E-02
	Carbon Monoxide	630-08-0		34	3.78E+01
Blasting	Nitrogen Oxides	10102-44-0		8	8.89E+00
Diasting	Sulphur Dioxide	7446-09-5		1	1.11E+00
	PM10				1.17E-02
	Crystalline Silica	14808-60-7			1.61E-03

Source ID Q5 Source Description Miscellaneous Materials Handling

Process Description

Dust emission occur at several points in the process, such as material loadind onto piles, loadout from piles and other drops that move material from one surface to another

Operating Scenario

Maximum Processing Rates

Limitations

None

EMISSION CALCULATION

Methodology: US EPA AP-42 Emission Factor

Source: US EPA AP-42 Section 13.2.4 - Aggregate Handling and Storage Piles (11/06)

 $E = k(0.0016) \qquad \frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}} \text{ (kg/megagram [Mg])}$

here:

E = emission factor k = particle size multiplier (dimensionless) U = mean wind speed, metres per second (m/s)

M = material moisture content (%)

Maximum Wind Speed (m/s): U =

Value based on maximum wind speed from five years of site specific MECP data set

Percent of Crystalline Silica in PM10 =

17.00

Reference: AWMA - PM4 Crystalline Silica Emission Factors and Ambient Concentrations at Aggregate-Producing

Sources in California (Richards et al, 2012)

Particle Size Distribution

Particle Size [µm]	Cumulative % Particle Distribution
SPM	_
PM10	50%

Emission Factors for Materials Handling

			kg/tonne			
Material	Transfer Location	Moisture %	SPM	US EPA Quality Rating	MOECC Quality Rating	Data Source
Unfragmented Limestone	Outdoor	2.1	1.71E-02	В	Average	AP-42 13.2.4
Overburden	Outdoor	4.8 (1)	5.36E-03	В	Average	AP-42 13.2.4

⁽¹⁾ Actual moisture content greater than 4.8%, however, as per Section 13.2.4.3 of the AP-42 document, since the moisture content range that the equation was developed for is 0.25-4.8%, 4.8% was used in the emission factor equation.

Calculation Formula

Emission Rate SPM [g/s] = Emission Factor [kg/tonne] x Activity Rate [tonnes/hr] x 1000 [g/kg] x 1/3600 [hrs/second]

 $\label{eq:emission_power_power} Emission \ Rate \ SPM \ [g/s] \ x \ Cumulative \ \% \ Partcile \ Distribution \ of \ PM10$

Emission Rate Crystalline Silica [g/s] = Emission Rate PM10 [g/s] x % Crystalline Silica in PM10

Sample Calculation:											
Emission Rate SPM [g/s] =	1.71E-02	kg	390	tonnes	1000	g	1	hr	1.85	g	i
		tonne		hr		kg	3600	seconds		s	i
										-	
PM10 Emission Rate [g/s] =	1.85E+00	g	43.75%	8.09E-01	g						
		s			s						
Crystalline Silica Emission Rate [g/s] =	8.09E-01	g	13.70%	1.11E-01	g						
		s			s						

PM10 Fraction

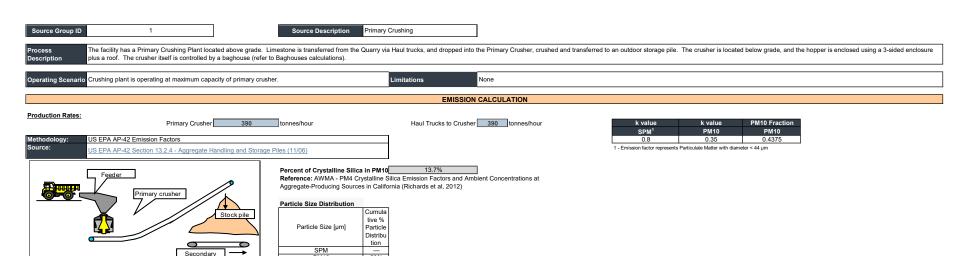
0.4375

PM10

0.35

1 - Emission factor represents Particulate Matter with diameter < 44 μm

SPM¹


0.8

	Source ID Material Handling Location Ma		Amount of Material		Control	EMISSION FACTOR		EMISSION RATE	
Source ID		Material	Transferred	Controls	Efficiency	SPM	SPM	PM10	Crystalline Silica
			[tonne/hr]			[kg/tonne]	[g/s]	[g/s]	[g/s]
Q5-1	Blast Pile to Haul Truck	Unfragmented Limestone	390	None	0%	1.71E-02	1.85E+00	8.09E-01	1.11E-01
Q5-1A	Overburden to Haul Truck	Overburden	67	None	0%	5.36E-03	9.93E-02	4.34E-02	5.95E-03
3-1B	Overburden to Storage Piles	Overburden	67	None	0%	5.36E-03	9.93E-02	4.34E-02	5.95E-03
						TOTAL	2.05E+00	8.95E-01	1.23E-01

Variable Wind Speed Emissions

Source ID	Materials Handling Location	Material	Contaminant	Wind speed [m/s]:	1.54	3.09	5.14	8.23	10.80	17.00
				EF [kg/Mg]	7.52E-04	1.86E-03	3.60E-03	6.64E-03	9.46E-03	1.71E-02
			SPM	ER [g/s]:	8.15E-02	2.01E-01	3.90E-01	7.20E-01	1.02E+00	1.85E+00
Q5-1	Blast Pile to Haul Truck	Unfragmented		Fraction	0.04	0.11	0.21	0.39	0.55	1.00
401	Sast in to ridar ridar	Limestone		EF [kg/Mg]	-	-	-	-	-	-
			Crystalline Silica	ER [g/s]:	4.88E-03	1.21E-02	2.34E-02	4.31E-02	6.14E-02	1.11E-01
				Fraction	0.04	0.11	0.21	0.39	0.55	1.00
			EF [kg/Mg]	2.36E-04	5.84E-04	1.13E-03	2.09E-03	2.97E-03		
	Overburden to Haul Truck	Overburden	SPM	ER [g/s]:	4.38E-03	1.08E-02	2.10E-02	3.87E-02	5.51E-02	9.93E-02
Q5-1A				Fraction	0.04	0.11	0.21	0.39	0.55	1.00
Q3-1A			Crystalline Silica	EF [kg/Mg]	-	-	-	-	-	-
				ER [g/s]:	2.62E-04	6.49E-04	1.26E-03	2.32E-03	3.30E-03	5.95E-03
				Fraction	0.04	0.11	0.21	0.39	0.55	1.00
				EF [kg/Mg]	2.36E-04	5.84E-04	1.13E-03	2.09E-03	2.97E-03	5.36E-03
			SPM	ER [g/s]:	4.38E-03	1.08E-02	2.10E-02	3.87E-02	5.51E-02	9.93E-02
3-1B	Overburden to Storage Piles	Overburden		Fraction	0.04	0.11	0.21	0.39	0.55	1.00
3-16	Overbuiden to Storage Files	Overbuiden		EF [kg/Mg]	-	-	-	-	-	-
			Crystalline Silica	ER [g/s]:	2.62E-04	6.49E-04	1.26E-03	2.32E-03	3.30E-03	
				Fraction	0.04	0.11	0.21	0.39	0.55	1.00

Calculation Formula

Emission Rate SPM [g/s] = Emission Factor [kg/tonne] x Activity Rate [tonnes/hr] x 1000 [g/kg] x 1/3600 [hrs/second]

Emission rate PM10 [g/s] = Emission Rate SPM [g/s] x Cumulative % Partcile Distribution of PM10

Emission Rate Crystalline Silica [g/s] = Emission Rate PM10 [g/s] x % Crystalline Silica in PM10

- [Sample Calculation:											
	Emission Rate [g/s] =	1.71E-02	kg	390	tonnes	1000	g	1	hr	(1-0.90)	1.85E-01	g
			tonne		hr		kg	3600	seconds			S
	PM10 Emission Rate [g/s] =	1.85E-01	g	43.75%	8.09E-02	g						
			S			s						
	Crystalline Silica Emission Rate [g/s] =	8.09E-02	g	13.70%	1.11E-02	g						
- 1			s			s						

Source ID	Equipment ID	Activity	Maximum Capacity [Mg/hr]		Controls	;		Control Efficiency	EMISSION FACTORS (uncontrolled) ¹	EMISS	ION RATES (contro	blled)
					Primary Control	Secondary Control		Efficiency	SPM	SPM	PM10	Crystalline Silica
					Control Method	Code	Control Method		[kg/Mg]	[g/s]	[g/s]	
Q5-1	Blast Pile to Haul Truck	Transfer Point	390	1	None	1	None		Emissions Includ	ed on Q5-Materials Ha		
1-1	Haul Truck dump into Primary Crusher	Transfer Point	390	11	2-3 sided enclosure	1	None	90%	1.71E-02	1.85E-01	8.09E-02	1.11E-02
5-7	Primary Crusher	Crusher	390	14 Underground		5	Baghouse	Emissions Included on Baghouses Worksheet				
5-7	Primary Crusher onto Feeder	Transfer Point	390	14	Underground	5	Baghouse	Emissions Included on Baghouses Worksheet				
5-7	Feeder to S-1, S-2	Transfer Point	390	12	Enclosure (inside building)	5	Baghouse		Emissions	ncluded on Baghouse:	s Worksheet	
1-2	S-2 to Crushed Limestone Pile	Transfer Point	390	2	Water Spray - Point of App.	1	None	75%	1.71E-02	4.62E-01	2.02E-01	2.77E-02
¹ Emission factor calculati	ion for Unfragmented Limestone presented on Materials Hand						Total	6.47E-01	2.83E-01	3.88E-02		

Source ID 2 Secondary Crushing

The facility has an at grade Secondary Crushing Plant to further reduce the limestone for clinker production. The Secondary Crushing Plant consists of Hammermill, New Secondary Crusher, Screen House, Loesche Mill Building and enclosed Process conveyors for aggregate transfer. Detailed equipment and transfer list is provided in the Table below. Description

The total emissions from secondary crushing of aggregate material are divided equally into 3 modelling sources that cover the secondary Operating Crushing plant is operating at maximum capacity of secondary crusher. Limitations crushing plants.

EMISSION CALCULATION

Production Rates:

Secondary Crusher 370 tonnes/hour Apron Feeder BC1 300 tonnes/hour

US EPA AP-42 Emission Factor JS EPA AP-42 Section 11.19.2 - Crushed Stone Processing and Pulverized Mineral Processing (8/04)

13.7%

Uncontrolled Emission Factor
US EPA MOECC Controlled Emission Factor US EPA MOECC Emission **Emission Factor** Contaminant CAS Source Quality Quality Factor Quality Quality SPM 1.50E-03 Marginal 7.00E-05 Marginal

Percent of Crystalline Silica in PM10 =

Reference: AWMA - PM4 Crystalline Silica Emission Factors and Ambient Concentrations at Aggregate-Producing Sources in California (Richards et al, 2012)

Particle Size Distribution

Particle Size [µm]	Cumulative % Particle Distribution
SPM	_
PM10	53%

US EPA AP-42 Appendix B.2 - GENERALIZED PARTICLE SIZE Reference:

Cumulative % Particle Distribution: Category 5

Calculation Formula

Emission Rate SPM [gs] = Emission Factor x Activity Rate x 1000 x 1/3600

Emission rate PM10 [g/s] = Emission Rate SPM [g/s] x Cumulative % Partcile Distribution of PM10

Emission Rate Crystalline Silica [g/s] = Emission Rate PM10 [g/s] x % Crystalline Silica in PM10

Sample Calculation:											
Emission Rate =	7.00E-05	kg	370	tonnes	1000	g	1	hr	0.007	g	
		tonne		hr		kg	3600	seconds		s	
PM10 Emission Rate [g/s] =	7.19E-03	g	53.00%	3.81E-03	g						
		S		<u> </u>	s						
Crystalline Silica Emission Rate [g/s] =	3.81E-03	g s	13.70%	5.22E-04	g s						

			Maximum		Co	ntrols		EMISSION FACTORS	EMISSION RATES ²	EMISSION RATES
Source ID	Equipment ID/ Description	Activity	Capacity [tonnes/hr]		Control		Control Efficiency	SPM	SPM	Crystalline Silica
				Controlled	Method	Code	,	[kg/Mg] ¹	[g/s]	[g/s]
2-1	Apron feeder BC1A drop point	Transfer Point	370	Yes	Enclosed	12	90%	7.00E-05	7.19E-04	5.22E-05
2-2	Conveyor BC2A drop point	Transfer Point	370	Yes	Enclosed	12	90%	7.00E-05	7.19E-04	5.22E-05
2-3	Swing beam machine, drop point	Transfer Point	300	Yes	Enclosed	12	90%	7.00E-05	5.83E-04	4.24E-05
2-4	Conveyor BC5 drop point	Transfer Point	370	Yes	Enclosed	12	90%	7.00E-05	7.19E-04	5.22E-05
2-5	Conveyor C9 drop point	Transfer Point	370	Yes	Enclosed	12	90%	7.00E-05	7.19E-04	5.22E-05
2-6	Apron feeder BC1 drop point	Transfer Point	300	Yes	Enclosed	12	90%	7.00E-05	5.83E-04	4.24E-05
2-7	Screen hopper drop point	Transfer Point	300	Yes	Enclosed	12	90%	7.00E-05	5.83E-04	4.24E-05
2-8	Conveyor C4 drop point	Transfer Point	300	Yes	Enclosed	12	90%	7.00E-05	5.83E-04	4.24E-05
2-9	Conveyor 1786 drop point	Transfer Point	300	Yes	Enclosed	12	90%	7.00E-05	5.83E-04	4.24E-05
2-10	Conveyor MFB2 drop point	Transfer Point	300	Yes	Enclosed	12	90%	7.00E-05	5.83E-04	4.24E-05
5-38	Secondary Crusher	Crusher	300	Yes	Baghouse	5	Emissions Incl	uded on Baghouse	s Worksheet	
1 - Emission factor re	epresents Particulate Matter with diameter < 10	0 µm from controlled so	urces (with wet suppresid	on)				Total	6.38E-03	4.63E-04

^{1 -} Emission factor represents Particulate Matter with diameter < 100 µm from controlled sources (with wet suppresion)

^{2 -} Emissions calculated using Materials Handling Calculation (See Worksheet 3-Materials Handling)

¹ For controlled sources that are part of the processing plant that employs current wet suppresion technology

Source ID 3 Miscellaneous Materials Handling

ust emissions occur at several points in the process, such as material loading onto piles, loadout from piles and other drops that move material from one surface to another. Only one ship can be unloaded at one time.

aximum Processing Rates

Limitations

US EPA AP-42 Emission Factor

US EPA AP-42 Section 13.2.4 - Aggregate Handling and Storage Piles (11/06)

13.7% Percent of Crystalline Silica in PM10 =

Reference: AWMA - PM4 Crystalline Silica Emission Factors and Ambient Concentrations at Aggregate-Producing Sources in California (Richards et al, 2012)

Crystalline Silica Emission Rate [g/s] = 3.53E-01

- E = emission factor k = particle size multiplier (dimensionless)
 U = mean wind speed, metres per second (m/s)
 M = material moisture content (%)

Maximum Wind Speed (m/s): U = 17.00

Value based on maximum daily wind speed from five years of met data (1996-2000) from MOECC dataset

Emission Factors for Materials Handling

				Emissi	on Factor, (kg/ton	ne)	
Material	Transfer Location	Moisture %	Maximum Wind Speed	SPM	US EPA Quality Rating	MOECC Quality Rating	Data Source
Coal	Outdoor	4.8 (1)	17.0	5.36E-03	В	Average	AP-42 13.2.2
Coke	Outdoor	4.8 (1)	17.0	5.36E-03	В	Average	AP-42 13.2.3
Anhydride Gypsum	Outdoor	4.8 (1)	17.0	5.36E-03	В	Average	AP-42 13.2.4
Crude Gypsum	Outdoor	4.8 (1)	17.0	5.36E-03	В	Average	AP-42 13.2.4

(1) Actual moisture content greater than 4.8%, however, as per Section 13.2.4.3 of the AP-42 document, since the moisture content range that the equation was developed for is 0.25-4.8%, 4.8% was used in the emission factor equation.

13.70%

Calculation Formula

Emission Rate [g/s] = Emission Factor [kg/tonne] x Activity Rate [tonnes/hr] x 1000 [g/kg] x 1/3600 [hrs/second] Emission rate PM10 [g/s] = Emission Rate SPM [g/s] x Cumulative % Partcile Distribution of PM10 Emission Rate Crystalline Silica [g/s] = Emission Rate PM10 [g/s] x % Crystalline Silica in PM10 Sample Calculation: Emission Rate SPM [g/s] = PM10 Emission Rate [g/s] = 8.07E-01 43.75%

Source ID	Material Handling Location	Material	Amount of Material	EMISSION FACTORS	PRIMARY	CONTROLS	SECONE	ARY CONTROLS	CONTROL EFFICIENCY	EMISSION RATES	EMISSION RATES BY SOURCE	EMISSION RATES	EMISSION RATES BY SOURCE
Cource ID	material rightning Eccation	material	Transferred [tonne/hr]	SPM	Code	Description	Code	Description	EFFICIENCY	SPM	SPM	Crystalline Silica	Crystalline Silica
				[kg/tonne]						[g/s]	[g/s]	[g/s]	[g/s]
3-1	LSC unloading from ship	Coal	1,083	5.36E-03	16	Water Spray (general)	1	None	50%	8.07E-01		4.84E-02	
3-1	Coke unloading from ship	Coke	2,600	5.36E-03	16	Water Spray (general)	1	None	50%	1.94E+00	1.936E+00	1.16E-01	1.161E-01
3-3	Anhydride gypsum unloading from ship	Anhydride Gypsum	2,800	5.36E-03	16	Water Spray (general)	1	None	50%	2.09E+00		1.25E-01	
3-5	Crude gypsum unloading from ship	Crude Gypsum	2,800	5.36E-03	16	Water Spray (general)	1	None	50%	2.09E+00	2.085E+00	1.25E-01	1.250E-01

Variable Wind Speed Emissions: SPM -3-1

Valiable Willu	a opeeu Elliissiolis. orivi -o- i									
Source ID	Source Description	Material	Contaminant	Wind Speed [m/s]	1.54	3.09	5.14	8.23	10.80	17.00
				EF [kg/Mg]	2.36E-04	5.84E-04	1.13E-03	2.09E-03	2.97E-03	5.36E-03
3-1	LSC unloading from ship	Coal	SPM	ER [g/s]:	3.56E-02	8.79E-02	1.70E-01	3.14E-01	4.47E-01	8.07E-01
1	1	1	1	Fraction	0.04	0.11	0.21	0.39	0.55	1.00

Source ID	3		Source Description	Miscellaneous Materials Handling
Process	Duet emission occur at several points in the	a procese euch as material loading onto piles	loadout from nilee a	nd other drone that move material from one

Description

EMISSION CALCULATIO

 Methodology
 US EPA AP-42 Emission Factor

 Source:
 US EPA AP-42 Section 13.2.4 - Aggregate Handling and Storage Piles (11/06)

Percent of Crystalline Silica in PM10 = 13.7%
Reference: AVMA - PM4 Crystalline Silica Emission Factors and Ambient Concentrations at Aggregate-Producing Sources in California (Richards et al., 2012)

Where:

 $\frac{\left(\frac{U}{2.2}\right)^{13}}{\left(\frac{M}{2}\right)^{14}} \text{ (kg/megagram [Mg])}$

Maximum Processing Rates

E = emission factor k = particle size multiplier (dimensionless) U = mean wind speed, metres per second (m/s) M = material moisture content (%)

 k value
 k value
 PM10 Fraction

 SPM¹
 PM10
 PM10

 0.8
 0.35
 0.4375

 1 - Emission factor represents Particulate Matter with diameter < 44 µm</td>

Maximum Wind Speed (m/s): U = 17.00 Value

17.00 Value based on maximum wind speed from five years of site specific MECP data set

Emission Factors for Materials Handling

				Emissio	on Factor, (kg/t	onne)	
Material	Transfer Location	Moisture %	Max Wind Speed, (m/s)	SPM	US EPA Quality	MOECC Quality	Data Source
Coal	Outdoor	4.8 (1)	17.0	5.36E-03	В	Average	AP-42 13.2-2
Coke	Outdoor	4.8 (1)	17.0	5.36E-03	В	Average	AP-42 13.2-3
Anhydride Gypsum	Outdoor	4.8 (1)	17.0	5.36E-03	В	Average	AP-42 13.2-4
Crude Gypsum	Outdoor	4.8 (1)	17.0	5.36E-03	В	Average	AP-42 13.2-4
Additives	Outdoor	4.8 (1)	17.0	5.36E-03	В	Average	AP-42 13.2-4
CKD	Outdoor	0.92	17.0	5.42E-02	В	Average	AP-42 13.2-5
Clinker	Outdoor	0.05	17.0	3.20E+00	A	ADOVE-	Lehigh
Weathered Clinker	Outdoor	0.5	17.0	1.27E-01	Α	ADOVE-	Lehigh
Unfragmented Limestone	Outdoor	2.1	17.0	1.71E-02	В	Average	AP-42 13.2-4
Crushed Limestone	Outdoor	0.7	17.0	7.94E-02	В	Average	AP-42 13.2-4
Overburden	Outdoor	4.8 (1)	17.0	5.36E-03	Α	ADOVE-	Lehigh

(1) Actual moisture content greater than 4.8%, however, as per Section 13.2.4.3 of the AP-42 document, since the moisture content range that the equation was developed for is 0.25-4.8%, 4.8% was used in the emission factor equation.

Calculation Formula

Emission Rate [g/s] = Emission Factor [kg/tonne] x Activity Rate [tonnes/hr] x 1000 [g/kg] x 1/3600 [hrs/second]

Sample Calculation:											
Emission Rate [g/s] =	0.005362	kg	29	tonnes	1000	g	1	hr	0.0434	q	
		tonne		hr		kg	3600	seconds		s	
PM10 Emission Rate [g/s] =	4.34E-02	g s	43.75%	1.90E-02	g s]					
Crystalline Silica Emission Rate [g/s] =	1.90E-02	g s	13.70%	2.60E-03	g s]					

		Amount of Material Transformed		EMISSION FACTOR	PRIMARY	CONTROLS	SECO	NDARY CONTROLS	CONTROL	EMISSION RATES	EMISSION RATES BY SOURCE	EMISSION RATES	EMISSION RATES BY SOURCE	EMISSION RATES	EMISSION RATES BY SOURCE
Source ID	Material Handling Location	Material	Transferred [tonne/hr]	SPM	Code	Description	Code	Description	EFFICIENC Y	SPM	SPM	PM10	PM10	Crystalline Silica	Crystalline Silica
			[tolinoin]	[kg/tonne]						[g/s]	[g/s]	[g/s]	[g/s]	[g/s]	[g/s]
3-2	LSC shore pile outloading	Coal	29	5.36E-03	1	None	1	None	0%	4.34E-02	4.34E-02	1.90E-02	1.90E-02	2.60E-03	2.60E-03
3-2	Coke shore pile outloading	Coke	29	5.36E-03	1	None	1	None	0%	4.34E-02	4.54L-02	1.90E-02	1.502-02	2.60E-03	2.002-03
2.4	Anhydride gypsum shore pile outloading	Anhydride Gypsum	65	5.36E-03	1	None	1	None	0%	9.68E-02	9.68E-02	4.24E-02	4.24E-02	5.80E-03	5.80E-03
3-4	Crude gypsum shore pile outloading	Crude Gypsum	65	5.36E-03	1	None	1	None	0%	9.68E-02	3.00L-02	4.24E-02	4.242-02	5.80E-03	3.00E-03
	Silica additive drop to pile	Additives	80	5.36E-03	1	None	1	None	0%	1.19E-01		5.21E-02		7.14E-03	
3-5	Iron additive drop to pile	Additives	80	5.36E-03	1	None	1	None	0%	1.19E-01	3.873E-01	5.21E-02	1.694E-01	7.14E-03	2.321E-02
3-3	Alumina additive drop to pile	Additives	80	5.36E-03	1	None	1	None	0%	1.19E-01	3.0732-01	5.21E-02	1.0342-01	7.14E-03	2.3212-02
	Additives Drop to Storage Hall	Additives	200	5.36E-03	11	2-3 sided enclosure	1	None	90%	2.98E-02		1.30E-02		1.79E-03	
3-6	CKD drop to pile	CKD	3	5.42E-02	1	None	1	None	0%	5.02E-02	3.724E-01	2.19E-02	1.629E-01	3.01E-03	2.232E-02
3-0	CKD outloading to sales	CKD	21	5.42E-02	- 1	None	1	None	0%	3.22E-01	3.7242-01	1.41E-01	1.0232-01	1.93E-02	2.2326-02
3-7	Fuel drop into feed hopper	Coal	17	5.36E-03	1	None	1	None	0%	2.48E-02	2.48E-02	1.09E-02	1.09E-02	1.49E-03	1.49E-03
									TOTAL	1.07E+00		4.66E-01		6.38E-02	

Variable Wind	Speed Emissions									
Source ID	Material Handling Location	Material	Contaminant	Wind speed [m/s]:	1.54	3.09	5.14	8.23	10.80	17.00
				EF [kg/Mg]	2.36E-04	5.84E-04	1.13E-03	2.09E-03	2.97E-03	5.36E-03
			SPM	ER [g/s]:	1.91E-03	4.73E-03	9.17E-03	1.69E-02	2.41E-02	4.34E-02
	LSC shore pile outloading	Coal		Fraction	0.04	0.11	0.21	0.39	0.55	1.00
	LSC shore pile oditoading	Coal	Crystalline	EF [kg/Mg]	-	-	-	-	-	
			Silica	ER [g/s]:	1.15E-04	2.84E-04	5.50E-04	1.01E-03	1.44E-03	2.60E-03
3-2			Silica	Fraction	0.04	0.11	0.21	0.39	0.55	1.00
3-2				EF [kg/Mg]	2.36E-04	5.84E-04	1.13E-03	2.09E-03	2.97E-03	5.36E-03
			SPM	ER [g/s]:	1.91E-03	4.73E-03	9.17E-03	1.69E-02	2.41E-02	4.34E-02
	Coke shore pile outloading	Coke		Fraction	0.04	0.11	0.21	0.39	0.55	1.00
	Coke shore pile oddoading	Coke	Crystalline	EF [kg/Mg]	-	-	-	-	-	
			Silica	ER [g/s]:	1.15E-04	2.84E-04	5.50E-04	1.01E-03	1.44E-03	2.60E-03
			SilCa	Fraction	0.04	0.11	0.21	0.39	0.55	1.00

Source ID Source Description Kiln Stacks

There is one dry process kiln (KILN4) operating at the facility, which has a kiln and a clinker cooler stack. KILN4 has a by-pass. There 2 are Loesche Mills with emissions directed to the Kiln 4 ESP. Emission rates for KILN4 source include the contribution from the Loesche Mills.

Both Kilns operating at maximum capacity

Operating Scenario

Limitations

For Kiln 4: US EPA AP-42 Chapter 11.6 Portland Cement Manufacturing emission factors are not available for every contaminant.

For contaminants that are not listed within the AP42 document but were measured within the source testing, the source testing values were used for the emission rate.

Methodology for assessing contaminants from ALCFs presented in Appendix H

For Kiln 4 By-pass: Source tested values were primarily used as the AP42 emission factors from a kiln are not representative. For contaminants that were not source tested, AP42 EFs (kiln) were used. Methodology for assessing contaminants from ALCFs presented in Appendix H

EMISSION CALCULATION

Methodology:	US EPA AP-42 Emission Factors (Chapter 11.6 - Portland Cement Manufacturing) Source Testing ALCF Assessment Methodology - Appendix H
Source:	2021 Source Testing, November 2021 2020 Source Testing, November 2020 2016 Stage 2 Source Testing Program, Amec Foster Wheeler, January 2017 US EPA AP-42 Chapter 11.6 Portland Cement Manufacturing (1/95) ALCF Lab Analysis

Source ID	Activity	Model ID	Clinker Production during 2016 Testing (tonne/hour)	Production during 2020 Source Testing (tonne/hour)	Production during 2021 Source Testing (tonne/hour)	Maximum Hourly Production (tonne/hour)
	Kiln 4		89	124	114	163
4-2	Loesche Mill (emissions through Kiln 4 ESP)	KILN4	_		_	95
	Loesche Mill (emissions through Kiln 4 ESP)		_		_	95
4-5	Kiln 4 By-Pass	KILN4_BP	100	117	105	163

 Conversion Factors

 1 kg =
 1000
 g

 1 hr =
 3600
 s

Percent of Crystalline Silica in PM10 = 13.7%

Reference: AWMA - PM4 Crystalline Silica Emission Factors and Ambient Concentrations at Aggregate-Producing Sources in California (Richards et al, 2012)

Calculation Formula

AP42 Method

Emission Rate = Maximum Hourly Production [tonne/hour] x Emission Factor [kg/Mg] x Conversion Factors

SPM Emission Rate Kiln4 = Emission Rate 2 Loesche Mills + Emission Rate Kiln 4

SPM Emission Rate Kiln4 = [Maximum Hourly Production Loesche Mills [tonne/hour] x Emission Factor [kg/Mg]] + [Maximum Hourly Production Kiln 4 [tonne/hour] x Emission Factors

 SPM Emission Rate Kiln4 =
 [190
 tonne
 6.20E-03
 kg
 +
 163
 tonne
 1.30E-01
 kg]
 1000
 g
 1
 hr
 6.21E+00
 g

 hour
 Mg
 hour
 Mg
 1
 kg
 3600
 s
 s

Source Testing Method

Emission Rate = Source Testing Emission Rate [g/s] x (Maximum Production / Clinker Production at the time of Source Testing)

 Ammonia Emission Rate Kiln4 =
 2.89E+00
 g
 163
 tonne
 1
 hour
 4.14E+00
 g

 s
 hour
 114
 tonne
 s

Sample Calculation for Kiln 4-Bypass Calcium Oxide (CaO):

CaO Emission Rate for Kiln4 BP = Emission Rate SPM_{FF,StackTest} [g/s] x (Emission Factor CaO_{ESP} [kg/tonne] / Emission Factor SPM_{ESP} [kg/tonne])

*Note: CaO emission factors for fabric filters do not exist in the AP-42 source used, relationships between the CaO ESP and SPM ESP emission factors were used and multiplied by the known SPM fabric filter stack testes emission rate to estimate the CaO Emission rate from the by-pass

Sample Calculation for Kiln 4 Cobalt (Co) from ALCF

Co Emission Rate for Kiln4 from ALCF = Source Testing Emission Rate [g/s] x (Maximum Production / Clinker Production at the time of Source Testing) x % Increase from ALCF

			AP -4	AP -42 Chapter 11.6		Sourc	e Testing	Comparison		ALCF	Modelled			
MODEL ID	Contaminant	CAS	Emission Factor ^{1,3} [kg/Mg]	Maximum Throughput [Mg/hr]	AP-42 EF Emission Rate [g/s]	Source Testing Emission Rate ² [g/s]	Scaled Source Testing Emission Rate [g/s]	% Difference	Is the Emission Factor Less than Source Testing	% Increase from ALCF	Modelled Emission Rate [g/s]	MECP Data Quality Rating	Emission Estimating Technique	Emission Estimate Source
KIIN4- Emissions from 2 Loesche Mills														
	SPM	N/A-1	6.20E-03	190	3.27E-01	_	_	_	_		3.27E-01	Marginal	EF	AP-42: Raw Mill with FF
	PM10	N/A-2	_	_	2.78E-01	_	_	_	_		2.78E-01	Marginal	EF	Percent composition of SPM
	Crystalline Silica	14808-60-7	_	_	3.81E-02	_	_	_	_		3.81E-02	Marginal	EF	Percent composition of PM10
KilN4- Emissions from KILN4			•											
	SPM	N/A-1	1.30E-01	163	5.89E+00	_	_	_	_		5.89E+00	Marginal	EF	AP-42: Preheater kiln with ESP
	PM10	N/A-2	_	_	5.00E+00	_	T -	_	_		5.00E+00	Marginal	EF	Percent composition of SPM
	Crystalline Silica	14808-60-7	_	_	6.85E-01	_	_	_	_		6.85E-01	Marginal	EF	Percent composition of PM10

						Source	Scaled Source		Is the					
MODEL ID	Contouringut	CAS	Emission Factor ^{1,3}	Maximum	AP-42 EF	Testing	Testing	0/ Difference	Emission	0/ Images from ALCE	Modelled	MECP Data	Emission Estimating	Emission Estimate Source
MODELID	Contaminant	CAS	[kg/Mg]	Throughput [Mg/hr]	Emission Rate [g/s]	Emission	Emission Rate	% Difference	Factor Less than Source	% Increase from ALCF	[g/s]	Quality Rating	Technique	Linission Estimate Source
KilN4 Kiln 4 Emissions + Two Looscho	e Mills emissions (directed to Kiln 4's ESP)					Rate ² [g/s]	[g/s]		Testina					
KILN4	SPM	N/A-1	_	_	6.21E+00	3.22E+00	4.61E+00	26%	no		6.21E+00	Marginal	EF	AP-42: Preheater kiln with ESP + AP-42 Raw Mill with FF
KILN4	PM10	N/A-2	_	_	5.28E+00	5.42E+00	_	_	_		5.28E+00	Marginal	EF	Percent composition of SPM
KILN4	Crystalline Silica	14808-60-7	_	_	7.24E-01	_	_	_	_		7.24E-01	Marginal	EF	Percent composition of PM10
KILN4	Carbon Monoxide	630-08-0	4.90E-01 9.00E+02	163 163	2.22E+01	6.97E+01	9.98E+01	78%	yes		2.22E+01	Marginal	EF EF	AP-42: Preheater Process Kiln
KILN4 KILN4	Carbon Dioxide Nitrogen Oxides	124-38-9 10102-44-0	9.00E+02 2.40E+00	163	4.08E+04 1.09E+02	6.50E+01	9.31E+01	 -17%	no		4.08E+04 1.09E+02	Average Marginal	EF	AP-42: Preheater Process Kiln AP-42: Preheater Process Kiln
KILN4	Sulphur dioxide	7446-09-5	2.70E-01	163	1.22E+01	6.68E+01	9.56E+01	87%	yes		1.22E+01	Marginal	EF	AP-42: Preheater Process Kiln
KILN4	Ammonia	7664-41-7	_	163	_	2.89E+00	4.14E+00		_		4.14E+00	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4	Aluminum	7429-90-5	6.50E-03	163	2.94E-01	_	_		_		2.94E-01	Marginal	EF	AP-42: ESP AP-42: ESP
KILN4 KILN4	Ammonium Antimony	N/A-6 7440-36-0	5.40E-02 —	163 163	2.45E+00 —	9.41E-05	1.35E-04				2.45E+00 1.35E-04	Marginal Uncertain	EF ST	2021 Source Testing
KILN4	Arsenic	7440-38-2	6.50E-06	163	2.94E-04	7.23E-03	1.04E-02	97%	yes		2.94E-04	Marginal	EF	AP-42: ESP
KILN4	Barium	7440-39-3	1.80E-04	163	8.15E-03		_		_		8.15E-03	Marginal	EF	AP-42: ESP
KILN4 KILN4	Beryllium Cadmium	7440-41-7 7440-43-9	3.30E-07 4.20E-06	163 163	1.49E-05 1.90E-04	9.76E-06 1.54E-04	1.29E-05 2.20E-04	-16% 14%	no yes		1.49E-05 1.90E-04	Marginal Marginal	EF EF	AP-42: Fabric Filter AP-42: ESP
KILN4	Calcium Oxide	1305-78-8	1.20E-01	163	5.43E+00	1.19E-02	1.70E-02	-31793%	no		5.43E+00	Marginal	EF	AP-42: ESP - Calcium emission factor
KILN4	Chloride	N/A-5	3.40E-01	163	1.54E+01	_	_		_		1.54E+01	Marginal	EF	AP-42: ESP
KILN4	Chromium	7440-47-3	3.90E-06	163	1.77E-04	5.66E-04	8.10E-04	78%	yes		1.77E-04	Marginal	EF	AP-42: ESP
KILN4 KILN4	Cobalt	7440-48-4 7440-50-8	2.60E-03	163 163	— 1.18E-01	1.48E-04 1.04E-03	2.12E-04 1.49E-03	-7807%		5828%	1.23E-02 1.18E-01	Uncertain	ST EF	2021 Source Testing & ALCF Increase AP-42: Fabric Filter
KILN4 KILN4	Copper Hydrogen Fluoride	7664-39-3	4.50E-04	163	2.04E-02	4.56E-02	6.53E-02	69%	no yes		2.04E-02	Marginal Marginal	EF	AP-42: ESP - Fluoride emission factor
KILN4	Hydrogen Chloride	7647-01-0	2.50E-02	163	1.13E+00	1.12E-01	1.60E-01	-606%	no	903%	1.02E+01	Marginal	EF	AP-42: ESP & ALCF Increase
KILN4	Iron	15438-31-0	8.50E-03	163	3.85E-01	_	_		_		3.85E-01	Marginal	EF	AP-42: ESP
KILN4 KILN4	Lead Manganese	7439-92-1 7439-96-5	3.60E-04 4.30E-04	163 163	1.63E-02 1.95E-02	1.71E-03 2.27E-03	2.45E-03 3.25E-03	-566% -499%	no no		1.63E-02 1.95E-02	Marginal Marginal	EF EF	AP-42: ESP AP-42: ESP
KILN4 KILN4	Manganese Mercury	7439-96-5	4.30E-04 1.10E-04	163	1.95E-02 4.98E-03	5.54E-04	7.93E-04	-499% -528%	no no	897%	1.95E-02 4.47E-02	Marginal Marginal	EF	AP-42: ESP & ALCF Increase
KILN4	Nickel	7440-02-0	_	163	_	3.34E-03	4.78E-03		=		4.78E-03	Uncertain	ST	2021 Source Testing
KILN4	Nitrate	N/A-7	2.30E-03	163	1.04E-01		_		_		1.04E-01	Marginal	EF_	AP-42: ESP
KILN4 KILN4	Phosphorus Potassium	7723-14-0 7440-09-7	9.00E-03	163 163	4.08E-01	4.49E-03 —	6.43E-03 —		_	1873%	1.20E-01 4.08E-01	Uncertain Marginal	ST EF	2021 Source Testing & ALCF Increase AP-42: ESP
KILN4	Selenium	7782-49-2	7.50E-05	163	3.40E-03	_	_	_	_		3.40E-03	Marginal	EF	AP-42: ESP
KILN4	Silicon	7440-21-3		163		1.45E+00	2.08E+00		_		6.21E+00	Uncertain	ST	ALCF Increase - 100% SPM ER
KILN4 KII N4	Silver Sodium	7440-22-4 7440-23-5	3.10E-07 2.00E-02	163 163	1.40E-05 9.06E-01		_		_		1.40E-05 9.06E-01	Marginal Marginal	EF EF	AP-42: Fabric Filter AP-42: ESP
KILN4 KILN4	Sulfate	N/A-8	1.00E-01	163	4.53E+00		_				4.53E+00	Marginal	EF	AP-42: ESP
KILN4	Sulfur trioxide	N/A-9	4.20E-02	163	1.90E+00	_	_	_	_		1.90E+00	Marginal	EF	AP-42: ESP
KILN4	Thallium	7440-28-0	2.70E-06	163	1.22E-04	1.02E-04	1.46E-04	16%	yes		1.22E-04	Marginal	EF	AP-42: Fabric Filter
KILN4 KILN4	Tin Titanium	7440-31-5 7440-32-6	1.90E-04	163 163	8.60E-03	5.28E-03 —	7.56E-03 —			1626%	1.23E-01 8.60E-03	Uncertain Marginal	ST EF	2021 Source Testing & ALCF Increase AP-42: ESP
KILN4	Vanadium	7440-62-2	-	163	— —	1.13E-04	1.62E-04		_		1.62E-04	Uncertain	ST	2021 Source Testing
KILN4	Zinc	7440-66-6	2.70E-04	163	1.22E-02	6.16E-03	8.82E-03	-39%	no		1.22E-02	Marginal	EF	AP-42: ESP
KILN4	C3 benzenes C4 benzenes	N/A-10 N/A-11	1.3E-6	163	5.89E-05	_	_		_		5.89E-05	Marginal	EF FF	AP-42: ESP
KILN4 KILN4	C4 benzenes C6 benzenes	N/A-11 N/A-12	3.0E-6 4.6E-7	163 163	1.36E-04 2.08E-05		_				1.36E-04 2.08E-05	Marginal Marginal	EF EF	AP-42: ESP AP-42: ESP
KILN4	Acenaphthylene	208-96-8	5.90E-05	163	2.67E-03	3.05E-05	5.58E-05	-4685%	no		2.67E-03	Marginal	EF	AP-42: Fabric Filter
KILN4	Acetone	67-64-1	1.90E-04	163	8.60E-03	_	_		_		8.60E-03	Marginal	EF	AP-42: ESP
KILN4 KII N4	Benzaldehyde Benzene	100-52-7 71-43-2	1.2E-5 1.60E-03	163 163	5.43E-04 7.24E-02	5.06E-02	7.24E-02	0%			5.43E-04 7.24E-02	Marginal Marginal	EF EF	AP-42: ESP AP-42: ESP
KILN4 KILN4	Benzo(a)anthracene	56-55-3	2.10E-08	163	9.51E-07	2.81E-07	7.24E-02 5.14E-07	-85%	no no		9.51E-07	Marginal	EF	AP-42: Fabric Filter
KILN4	Benzo(a)pyrene	50-32-8	6.50E-08	163	2.94E-06	1.14E-07	2.09E-07	-1310%	no		2.94E-06	Marginal	EF	AP-42: Fabric Filter
KILN4	Benzo(b)fluoranthene	205-99-2	2.80E-07	163	1.27E-05	2.87E-07	5.25E-07	-2313%	no		1.27E-05	Marginal	EF	AP-42: Fabric Filter
KILN4 KILN4	Benzo(g,h,i)perylene Benzo(k)fluoranthene	191-24-2 207-08-9	3.90E-08 7.70E-08	163 163	1.77E-06 3.49E-06	6.64E-07 2.87E-07	1.22E-06 5.25E-07	-45% -564%	no		1.77E-06	Marginal Marginal	EF EF	AP-42: Fabric Filter AP-42: Fabric Filter
KILN4 KILN4	Benzoic acid	65-85-0	1.80E-03	163	8.15E-02		5.25E-07 —	-304%	no —		3.49E-06 8.15E-02	Marginal	EF	AP-42: ESP
KILN4	Biphenyl	92-52-4	3.1E-6	163	1.40E-04	_	_	_	_		1.40E-04	Marginal	EF	AP-42: ESP
KILN4	Bis(2-ethylhexyl)phthalate	117-81-7	4.8E-5	163	2.17E-03	_	_	_	_		2.17E-03	Marginal	EF	AP-42: ESP
KILN4 KILN4	Bromomethane Carbon disulfide	74-83-9 75-15-0	2.2E-5 5.5E-5	163 163	9.96E-04 2.49E-03		_		_		9.96E-04 2.49E-03	Marginal Marginal	EF EF	AP-42: ESP AP-42: ESP
KILN4 KILN4	Carbon disulide Chlorobenzene	108-90-7	8.0E-6	163	3.62E-04		_		_		3.62E-04	Marginal	EF EF	AP-42: ESP AP-42: ESP
KILN4	Chloromethane	74-87-3	1.90E-04	163	8.60E-03	_	_	_	_		8.60E-03	Marginal	EF	AP-42: ESP
KILN4	Chrysene	218-01-9	8.10E-08	163	3.67E-06	1.55E-07	2.84E-07	-1193%	no		3.67E-06	Marginal	EF	AP-42: Fabric Filter
KILN4 KILN4	Di-n-butylphthalate Dibenz(a,h)anthracene	84-74-2 53-70-3	2.1E-5 3.10E-07	163 163	9.51E-04 1.40E-05	2.01E-07	 3.68E-07	-3715%	no		9.51E-04 1.40E-05	Marginal Marginal	EF EF	AP-42: ESP AP-42: Fabric Filter
KILN4 KILN4	Ethylbenzene	100-41-4	9.5E-6	163	4.30E-05	5.27E-03	7.54E-03	94%	yes		4.30E-05	Marginal	EF	AP-42: ESP
KILN4	Fluoranthene	206-44-0	4.40E-06	163	1.99E-04	2.16E-06	3.95E-06	-4939%	no		1.99E-04	Marginal	EF	AP-42: Fabric Filter
KILN4	Fluorene	86-73-7	9.4E-6	163	4.26E-04	1.22E-05	2.23E-05	-1806%	no		4.26E-04	Marginal	EF	AP-42: Fabric Filter
KILN4 KILN4	Formaldehyde Freon 113	50-00-0 76-13-1	2.30E-04 2.5E-5	163 163	1.04E-02 1.13E-03		_				1.04E-02 1.13E-03	Marginal Marginal	EF EF	AP-42: Fabric Filter AP-42: ESP
KILN4	Indeno(1,2,3-cd)pyrene	193-39-5	4.30E-08	163	1.95E-06	1.81E-07	3.31E-07	-488%	no		1.95E-06	Marginal	EF	AP-42: Fabric Filter
KILN4	Methyl ethyl ketone	78-93-3	1.5E-5	163	6.79E-04	7.34E-03	1.05E-02	94%	yes		6.79E-04	Marginal	EF	AP-42: ESP
KILN4	Methylene chloride	75-09-2	2.50E-04	163	1.13E-02	_	_		_		1.13E-02	Marginal	EF	AP-42: ESP
KILN4 KILN4	Methylnaphthalene Naphthalene	90-12-0 91-20-3	2.1E-6 1.10E-04	163 163	9.51E-05 4.98E-03	8.20E-05	1.50E-04	-3218%	no		9.51E-05 4.98E-03	Marginal Marginal	EF EF	AP-42: ESP AP-42: ESP
KILN4	Phenanthrene	85-01-8	2.00E-04	163	9.06E-03	5.70E-05	1.04E-04	-8579%	no		9.06E-03	Marginal	EF	AP-42: Fabric Filter
KILN4	Phenol	108-95-2	5.5E-5	163	2.49E-03	_	_	_	_		2.49E-03	Marginal	EF	AP-42: ESP
KILN4	Pyrene	129-00-0	2.2E-6	163	9.96E-05	1.41E-06	2.58E-06	-3759%	no		9.96E-05	Marginal	EF	AP-42: Fabric Filter
KILN4 KILN4	Styrene Toluene	100-42-5 108-88-3	7.5E-7 1.00E-04	163 163	3.40E-05 4.53E-03	5.25E-03 2.30E-02	7.52E-03 3.29E-02	100% 86%	yes yes		3.40E-05 4.53E-03	Marginal Marginal	EF EF	AP-42: ESP AP-42: ESP
KILN4	Xylenes	1330-20-7	6.5E-5	163	2.94E-03	1.88E-02	2.70E-02	89%	yes		2.94E-03	Marginal	EF	AP-42: ESP
KILN4	PCBs	1336-36-3	_	163	_	9.63E-05	1.76E-04	_	_		1.76E-04	Uncertain	ST	2016 Stage 2 Source Testing Program

Made By: LL Checked By: JJZ

MODEL ID	Contaminant	CAS	Emission Factor ^{1,3} [kg/Mg]	Maximum Throughput [Mg/hr]	AP-42 EF Emission Rate [g/s]	Source Testing Emission Rate ² [g/s]	Scaled Source Testing Emission Rate [g/s]	% Difference	Is the Emission Factor Less than Source Testing	% Increase from ALCF	Modelled Emission Rate [g/s]	MECP Data Quality Rating	Emission Estimating Technique	Emission Estimate Source
Kiln 4 Cooler with baghouse														
KILN4_C	SPM	N/A-1	6.80E-02	163	3.08E+00		_		_		3.08E+00	Marginal	EF	AP-42: Clinker cooler with fabric filter
KILN4_C	PM10	N/A-2	_	_	2.62E+00		_		_		2.62E+00	Marginal	EF	Percent composition of SPM
KILN4_C	Crystalline Silica	14808-60-7		_	3.59E-01		_				3.59E-01	Marginal	EF	Percent composition of PM10
KilN4_BP- Kiln 4ByPass Stack with Baghouse	9													2
KILN4_BP	SPM	N/A-1	_	_	4.56E-01	3.59E-01	5.57E-01	-22%	yes		4.56E-01	Average	EF	MOECC EF 20 mg/m³ (as previously submitted)
KILN4_BP	PM10	N/A-2	_	_	3.88E-01	8.85E-02	4.73E-01		_		3.88E-01	Marginal	EF	Percent composition of SPM
KILN4 BP	Crystalline Silica	14808-60-7	_	_	5.31E-02		6.48E-02		_		5.31E-02	Marginal	EF	Percent composition of PM10
KILN4_BP	Carbon Monoxide	630-08-0	4.90E-01	163	2.22E+01	8.56E-02	1.33E-01	99%	no		1.33E-01	Uncertain	ST	2021 Source Testing
KILN4_BP	Carbon Dioxide	124-38-9	9.00E+02	163	4.08E+04	_	_	_	_		4.08E+04	Average	EF	AP-42: Preheater Process Kiln
KILN4_BP	Nitrogen Oxides	10102-44-0	2.40E+00	163	1.09E+02	9.57E-01	1.48E+00	99%	no		1.48E+00	Uncertain	ST	2021 Source Testing
KILN4_BP	Sulphur dioxide	7446-09-5	2.70E-01	163	1.22E+01	1.59E-01	2.47E-01	98%	no		2.47E-01	Uncertain	ST	2021 Source Testing
KILN4_BP	Ammonia	7664-41-7	5.10E-03	163	2.31E-01	1.01E-03	1.57E-03	99%	no		1.57E-03	Uncertain	ST	2021 Source Testing
KILN4_BP	Aluminum	7429-90-5	6.50E-03	163	2.94E-01	_	_	_	_		2.94E-01	Marginal	EF	AP-42: ESP
KILN4_BP	Ammonium	N/A-6	5.40E-02	163	2.45E+00		_		_		2.45E+00	Marginal	EF	AP-42: ESP
KILN4 BP	Antimony	7440-36-0	_	163	_	7.68E-06	1.19E-05		_	9071%	1.08E-03	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4_BP	Arsenic	7440-38-2	6.00E-06	163	2.72E-04	2.68E-05	4.16E-05	85%	no	216%	8.98E-05	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4 BP	Barium	7440-39-3	2.30E-04	163	1.04E-02		_		_	193%	2.01E-02	Marginal	EF	AP-42: Fabric Filter & ALCF Increase
KILN4_BP	Beryllium	7440-41-7	3.30E-07	163	1.49E-05	7.26E-07	1.01E-06	93%	no		1.01E-06	Uncertain	ST	2020 Source Testing
KILN4 BP	Bismuth	7440-69-9		_	4.56E-01				_		4.56E-01	Average	MB	ALCF Increase - 100% SPM ER
KILN4_BP	Cadmium	7440-43-9	1.10E-06	163	4.98E-05	8.26E-06	1.28E-05	74%	no	3580%	4.58E-04	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4_BP	Calcium Oxide	1305-78-8	1.20E-01	163	4.21E-01	1.60E-03	2.48E-03	99%	no	3093%	7.67E-02	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4_BP	Chloride	N/A-5	1.10E-03	163	4.98E-02				_		4.98E-02	Marginal	EF	AP-42: Fabric Filter
KILN4_BP	Chromium	7440-47-3	7.00E-05	163	3.17E-03	3.23E-04	5.01E-04	84%	no	221%	1.11E-03	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4_BP	Cobalt	7440-48-4		163		1.04E-05	1.61E-05		_	5828%	9.40E-04	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4_BP	Copper	7440-50-8	2.60E-03	163	1.18E-01	4.69E-05	7.27E-05	100%	no	4528%	3.29E-03	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4_BP	Hydrogen Fluoride	7664-39-3	4.50E-04	163	2.04E-02	1.56E-03	2.42E-03	88%	no	2000/	2.42E-03	Uncertain	ST	2021 Source Testing
KILN4 BP	Hydrogen Chloride Iron	7647-01-0 15438-31-0	7.30E-02 8.50E-03	163 163	3.31E+00	1.55E-02	2.40E-02	99%	no	903%	2.17E-01	Uncertain	ST EF	2021 Source Testing & ALCF Increase
KILN4_BP		7439-92-1	3.80E-05	163	3.85E-01 1.72E-03	3.06E-04	4.75E-04	 72%		576%	4.56E-01 2.73E-03	Marginal	ST	ALCF Increase - 100% SPM ER
KILN4_BP	Lead						4.75E-04		no	5/6%		Uncertain	MB	2021 Source Testing & ALCF Increase
KILN4_BP	Magnesium	7439-95-4	-	_	4.56E-01				_		4.56E-01	Average		ALCF Increase - 100% SPM ER
KILN4_BP	Manganese	7439-96-5	4.30E-04	163	1.95E-02	1.82E-04	2.82E-04	99%	no	1029%	2.90E-03	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4_BP	Mercury	7439-97-6	1.20E-05	163	5.43E-04	7.42E-06	1.15E-05	98%	no	897%	1.03E-04	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4_BP	Nickel	7440-02-0		163	-	3.17E-04	4.92E-04		_		4.92E-04	Uncertain	ST	2021 Source Testing
KILN4 BP	Nitrate	N/A-7	2.30E-03	163 163	1.04E-01	3.07E-04	4.76E-04			40700/	1.04E-01	Marginal	EF OT	AP-42: ESP
KILN4_BP KILN4_BP	Phosphorus Potassium	7723-14-0 7440-09-7	9.00E-03	163	— 4.00F.04	3.07E-04 —	4.76E-04 —		_	1873%	8.92E-03 4.08E-01	Uncertain Marginal	ST EF	2021 Source Testing & ALCF Increase AP-42: ESP
KILN4 BP	Selenium	7782-49-2	1.00E-04	163	4.08E-01 4.53E-03						4.08E-01 4.53E-03	Marginal	EF	AP-42: ESP AP-42: Fabric Filter
KILN4_BP	Silicon	7440-21-3	1.00E-04 —	163	4.55E-05 —	9.82E-02	1.52E-01		_		4.56E-01	Uncertain	ST	ALCF Increase - 100% SPM ER
KILN4 BP	Silver	7440-21-3	3.10E-07	163	1.40E-05	9.02E-02	1.52E-01 —			151%	2.12E-05	Marginal	EF	AP-42: Fabric Filter & ALCF Increase
KILN4 BP	Sodium	7440-23-5	2.00E-02	163	9.06E-01					13170	4.56E-01	Marginal	EF	ALCF Increase - 100% SPM ER
KILN4 BP	Sulfate	N/A-8	3.60E-03	163	1.63E-01						1.63E-01	Marginal	EF	AP-42: Fabric Filter
KILN4 BP	Sulfur trioxide	N/A-9	7.30E-03	163	3.31E-01		_		_		3.31E-01	Marginal	EF	AP-42: Fabric Filter
KILN4 BP	Thallium	7440-28-0	2.70E-06	163	1.22E-04	5.80E-06	8.99E-06	93%	no		8.99E-06	Uncertain	ST	2021 Source Testing
KILN4 BP	Tin	7440-31-5		163	-	2.47E-04	3.83E-04		_	1626%	6.23E-03	Uncertain	ST	2021 Source Testing & ALCF Increase
KILN4 BP	Titanium	7440-32-6	1.90E-04	163	8.60E-03	_	— — — — — — — — — — — — — — — — — — —		—	151%	1.30E-02	Marginal	EF EF	AP-42: ESP & ALCF Increase
KILN4 BP	Tungsten	7440-33-7		_	4.56E-01	_		_	_		4.56E-01	Average	MB	ALCF Increase - 100% SPM ER
KILN4 BP	Vanadium	7440-62-2	_	163	_	9.91E-06	1.54E-05	_	_		1.54E-05	Uncertain	ST	2021 Source Testing
KILN4 BP	Zinc	7440-66-6	1.70E-04	163	7.70E-03	2.46E-04	3.81E-04	95%	no		4.56E-01	Uncertain	ST	2021 Source Testing

Made By: LL Checked By: JJZ

MODEL ID	Contaminant	CAS	Emission Factor ^{1,3} [kg/Mg]	Maximum Throughput [Mg/hr]	AP-42 EF Emission Rate [g/s]	Source Testing Emission Rate ² [g/s]	Scaled Source Testing Emission Rate [g/s]	% Difference	than Source	% Increase from ALCF	Modelled Emission Rate [g/s]	MECP Data Quality Rating	Emission Estimating Technique	Emission Estimate Source
KILN4 BP	C3 benzenes	N/A-10	1.3E-6	163	5.89E-05		_	_	Testina —		5.89E-05	Marginal	EF	AP-42: ESP
KILN4 BP	C4 benzenes	N/A-11	3.0E-6	163	1.36E-04	_	_	_	_		1.36E-04	Marginal	EF	AP-42: ESP
KILN4 BP	C6 benzenes	N/A-12	4.6E-7	163	2.08E-05	_	_	_	_		2.08E-05	Marginal	EF	AP-42: ESP
KILN4 BP	Acenaphthylene	208-96-8	5.9E-5	163	2.67E-03	4.39E-08	7.19E-08	100%	no		7.19E-08	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4 BP	Acetone	67-64-1	1.90E-04	163	8.60E-03	_	_	_	_		8.60E-03	Marginal	EF	AP-42: ESP
KILN4 BP	Benzaldehyde	100-52-7	1.2E-5	163	5.43E-04	_	_	_	_		5.43E-04	Marginal	EF	AP-42: ESP
KILN4 BP	Benzene	71-43-2	8.00E-03	163	3.62E-01	9.54E-05	1.48E-04	100%	no		1.48E-04	Uncertain	ST	2021 Source Testing
KILN4 BP	Benzo(a)anthracene	56-55-3	2.1E-8	163	9.51E-07	2.60E-08	4.26E-08	96%	no		4.26E-08	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4 BP	Benzo(a)pyrene	50-32-8	6.5E-8	163	2.94E-06	1.43E-08	2.34E-08	99%	no		2.34E-08	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4 BP	Benzo(b)fluoranthene	205-99-2	2.8E-7	163	1.27E-05	1.67E-08	2.73E-08	100%	no		2.73E-08	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4 BP	Benzo(g,h,i)perylene	191-24-2	3.9E-8	163	1.77E-06	4.76E-08	7.79E-08	96%	no		7.79E-08	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4 BP	Benzo(k)fluoranthene	207-08-9	7.7E-8	163	3.49E-06	1.67E-08	2.73E-08	99%	no		2.73E-08	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4 BP	Benzoic acid	65-85-0	1.80E-03	163	8.15E-02			_	_		8.15E-02	Marginal	EF	AP-42: ESP
KILN4 BP	Biphenyl	92-52-4	3.1E-6	163	1.40E-04		_	_	_		1.40E-04	Marginal	EF	AP-42: ESP
KILN4 BP	Bis(2-ethylhexyl)phthalate	117-81-7	4.8E-5	163	2.17E-03	_	_	_	_		2.17E-03	Marginal	EF	AP-42: ESP
KILN4 BP	Bromomethane	74-83-9	2.2E-5	163	9.96E-04	_	_	_	_		9.96E-04	Marginal	EF	AP-42: ESP
KILN4_BP	Carbon disulfide	75-15-0	5.5E-5	163	2.49E-03	_	_	_	_		2.49E-03	Marginal	EF	AP-42: ESP
KILN4_BP	Chlorobenzene	108-90-7	8.0E-6	163	3.62E-04	_	_	_	_		3.62E-04	Marginal	EF	AP-42: ESP
KILN4_BP	Chloromethane	74-87-3	1.90E-04	163	8.60E-03	_	_	_	_		8.60E-03	Marginal	EF	AP-42: ESP
KILN4 BP	Chrysene	218-01-9	8.1E-8	163	3.67E-06	1.26E-08	2.06E-08	99%	no		2.06E-08	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4_BP	Di-n-butylphthalate	84-74-2	2.1E-5	163	9.51E-04	_	_	_	_		9.51E-04	Marginal	EF	AP-42: ESP
KILN4_BP	Dibenz(a,h)anthracene	53-70-3	3.1E-7	163	1.40E-05	2.60E-08	4.26E-08	100%	no		4.26E-08	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4_BP	Ethylbenzene	100-41-4	9.5E-6	163	4.30E-04	9.54E-05	1.48E-04	66%	no		1.48E-04	Uncertain	ST	2021 Source Testing
KILN4_BP	Fluoranthene	206-44-0	4.4E-6	163	1.99E-04	8.27E-08	1.35E-07	100%	no		1.35E-07	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4_BP	Fluorene	86-73-7	9.4E-6	163	4.26E-04	1.71E-07	2.80E-07	100%	no		2.80E-07	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4_BP	Formaldehyde	50-00-0	2.30E-04	163	1.04E-02	_			_		1.04E-02	Uncertain	ST	AP-42: Fabric Filter
KILN4_BP	Freon 113	76-13-1	2.5E-5	163	1.13E-03		_	_	_		1.13E-03	Marginal	EF	AP-42: ESP
KILN4_BP	Indeno(1,2,3-cd)pyrene	193-39-5	4.3E-8	163	1.95E-06	1.67E-08	2.73E-08	99%	no		2.73E-08	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4_BP	Methyl ethyl ketone	78-93-3	1.5E-5	163	6.79E-04	9.54E-05	1.48E-04	78%	no		1.48E-04	Uncertain	ST	2021 Source Testing
KILN4 BP	Methylene chloride	75-09-2	2.50E-04	163	1.13E-02		_	_	_		1.13E-02	Marginal	EF	AP-42: ESP
KILN4_BP	Methylnaphthalene	90-12-0	2.1E-6	163	9.51E-05		_		_		9.51E-05	Marginal	EF	AP-42: ESP
KILN4_BP	Naphthalene	91-20-3	8.50E-04	163	3.85E-02	4.72E-06	7.73E-06	100%	no		7.73E-06	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4_BP	Phenanthrene	85-01-8	2.00E-04	163	9.06E-03	3.17E-07	5.19E-07	100%	no		5.19E-07	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4_BP	Phenol	108-95-2	5.5E-5	163	2.49E-03	_	_	_	_		2.49E-03	Marginal	EF	AP-42: ESP
KILN4_BP	Pyrene	129-00-0	2.2E-6	163	9.96E-05	7.28E-08	1.19E-07	100%	no		1.19E-07	Uncertain	ST	2016 Stage 2 Source Testing Program
KILN4 BP	Styrene	100-42-5	7.5E-7	163	3.40E-05	9.54E-05	1.48E-04	-336%	yes		1.48E-04	Uncertain	ST	2021 Source Testing
KILN4_BP	Toluene	108-88-3	1.00E-04	163	4.53E-03	1.02E-04	1.58E-04	97%	no		1.58E-04	Uncertain	ST	2021 Source Testing
KILN4 BP	Xylenes	1330-20-7	6.5E-5	163	2.94E-03	2.86E-04	4.44E-04	85%	no		4.44E-04	Uncertain	ST	2021 Source Testing
KILN4_BP	PCBs	1336-36-3	_	163	_	8.82E-08	1.44E-07	_	_		1.44E-07	Uncertain	ST	2016 Stage 2 Source Testing Program

¹ US EPA AP-42 Chapter 11.6 Portland Cement Manufacturing (1/95)
² 2020 Source Testing, November 2020; 2021 Source Testing, November 2021 & 2016 Stage 2 Source Testing, January 2017
³ Assumed 85% of SPM is PM10, estimated based off AP-42 Table 11.6-5

Source ID	4 Source Description Kiln ByPa	ass Stack SPM	
Process Description	Kiln 4 ByPass Stack		
Operating Scenario	Kiln operating at maximum capacity	Limitations	Kiln 4 bypass stack emission rates are based on the MECP default emission factor, as this emission rate is more conservative.

EMISSION CALCULATION

KILN 4 Bypass Stack

Methodology:	Ontario MECP Emission Factor
Source:	Procedure for Preparing an ESDM Report, March 2018
	Source Testing 2020, November 2020

			Emission Factor					
Source	Contaminant	CAS	Emission Factor [mg/m³]	Quality Rating	MOECC Quality Rating			
Baghouse	SPM	-	20	-	Average			
Bagilouse	PM10 ¹	-	17	-	Average			

1 Assuming PM10 represents 85% of SPM

Calculation Formula

Emission Rate = Emission Factor x Volumetric Flow Rate x 1/1000

Sample Calculation:								
Emission Rate =	20	mg	22.80	Am³	1	g	0.46	g
		m³		S	1000	mg		S

			EMISSION I	FACTOR	EMISSION	RATES	
Source ID	Equipment ID/ Description	Volumetric Flow Rate [Am³/s]	SPM	MECP Emission	SPM	PM10	
			[mg/Am³]	Factor Quality	[g/s]	[g/s]	
4-5	Kiln 4 By-pass	22.80	20	Average	4.56E-01	3.88E-01	
				TOTAL	4.56E-01	3.88E-01	

Source ID	4	Source Description Kiln Stacks
Process Description		There is one kiln (Kiln 4) operating at the facility which has its individual kiln and clinker cooler stacks.
Operating Scenario Kiln 4 o	 perating at maxim	num capacity

EMISSION CALCULATION

Methodology:	Source Testing
Source:	2021 Source Testing, November 2021

Source ID	Source Description	Maximum Hourly Production (tonne/hour)
4-2	Kiln 4 Stack	163

Source ID	Source Description	In-stack Concentration [ng/DRm³]	In-stack Concentration [ng/WNm³]	In-stack Concentration [ng/DNm³@ 10% O2]	Dioxins and Furans Emission Rate [TEQ g/s]
4-2	Kiln 4 Stack	1.34E-02	1.32E-02	2.08E-02	1.81E-09
4-5	Kiln 4 Bypass Stack	6.97E-03	7.55E-03	1.69E-01	6.13E-11

Source ID 4

Process Description Selective non-catalytic reduction (SNCR) is used on the Kiln 4 stack to reduce nitrogen oxide emissions via injection of ammonia. Unreacted ammonia emitted from the Kiln as ammonia is known as "ammonia slip".

Operating Scenario

Kiln 4 operating at maximum capacity

EMISSION CALCULATION

Methodology:	Best Available Techniques (BAT) Reference Document for the Production of Cement,
wethodology.	Lime and Magnesium Oxide Emission Factor
Carrear	Best Available Techniques (BAT) Reference Document for the Production of Cement,
Source:	Lime and Magnesium Oxide, 2013

Calculation Formula

Emission Rate = Emission Factor x Volumetric Flow Rate x 1/1000

 Sample Calculation:

 Emission Rate =
 50
 mg
 207.00
 Am³
 1
 g

 Nm³
 s
 1000
 mg

 Emission Rate =
 10.35
 g

 s
 s
 s

	Equipment ID/	Volumetric Flow	EMIS	SSION FACTOR	EMISSION RATE
Source ID	Description	Rate	Ammonia	MECP Emission Factor	Ammonia
	Description	[Am³/s]	[mg/Am³]	Quality	[g/s]
4-2	Kiln 4 Stack	207.00	35	Uncertain	7.19E+00
	-			TOTAL	7.19E+00

Source ID	5	Source Description Baghouse Stacks	
Process Description	The facility has numerous baghouses serving crushing equipment, mills and transfer po	oints.	
Operating Scenario	All baghouses are operating simultaneously at maximum capacity.	Limitatio	US EPA AP-42 Chapter 11.6 Portland Cement Manufacturing emission factors are not available for every source type. Remaining baghouses used an emission factor of 20 mg/m³ for the large dust collectors (>5 m³/s) and 10 mg/m³ for small dust collectors (<5 m³/s), as per Table C-2 of the MOECC ESDM Procedure Document.

US EPA AP-42 Emission Factors (Chapter 11.6 - Portland Cement Manufacturing)
Ontario MOECC Emission Factor US EPA AP-42 Chapter 11.6 Portaland Cement Manufacturing (1/95)
Procedure for Preparing an ESDM Report, PIBs # 3614e04, February 2017

13.7% Percent of Crystalline Silica in PM10 =

Reference: AWMA - PM4 Crystalline Silica Emission Factors and Ambient Concentrations at Aggregate-Producing Sources in California (Richards et al, 2012)

Sample Calculation:

MOECC Method			SPM Emission Ra	te = Emission Fa	ctor x Volumetric Flo	w Rate x 1/1000							
SPM Emission Rate (SRCID14) =	10	mg m³	0.90	Am³ s	1 1000	g 0.009 mg	g s						
AP42 Method	AP42 Method SPM Emission Rate = Emission Factor x Maximum Throughput x Conversion												
SPM Emission Rate (SRCID3) =	0.006	kg Mg	80.00	Mg hour	1000 1	g kg	3600	g mg	hour seconds	1.38E-01	g s		

Processor Proc								AP-42 Chapter 11.6			MOECC			Modelled					
Section Control Cont	Source ID	Model ID			Process	Flow Rate	Throughput		Unit	Emission	Quality	Emission Factor	Emission		Emission Estimate Source	Modelled Emission	Emission	Silica Emission	Quality
Section Comment Comm	5-1	SRCID3	#1 Mill Stack with Baghouse equipped with dust collector	Dust Collector	Raw Mill for Kiln 4	20.20	80.00	0.0062	kg/Mg	1.38E-01	Marginal	_	_	_	AP42: Raw mill with fabric filter	1.38E-01	1.17E-01	1.60E-02	Marginal
Section Sect	5-2	SRCID4	#2 Mill Stack equipped with dust collector	Dust Collector	Grinding Mill - Slag	18.70	80.00	0.0062	kg/Mg	1.38E-01	Marginal	_	_	_	AP42: Raw mill with fabric filter	1.38E-01	1.17E-01	1.60E-02	Marginal
1-4 SRCDOR #Mill Stack souppool with data coloctor	5-3	SRCID5		Dust Collector	Cement Mill	20.20	45.00	0.0042				_	_	_	AP42: Finish grinding mill with fabric filter	5.25E-02	4.46E-02	6.11E-03	Marginal
Second Color	5-4	SRCID6		Dust Collector	Cement Mill	20.20	45.00	0.0042				_	_	_		5.25E-02	4.46E-02	6.11E-03	Marginal
Second Color	5-5	SRCID7		Dust Collector	Cement Mill	30.80	55.00	0.0042	ka/Ma	6.42E-02	Marginal	_	_	_		6.42E-02	5.45E-02	7.47E-03	Marginal
For SRCICIT Primary Cruster equipped with dust collector	5-6	SRCID8		Dust Collector	Cement Mill	60.70	80.00	0.0042			Marginal	_	_	_		9.33E-02	7.93E-02	1.09E-02	Marginal
5-8 SRCIDI2 Astronominal equipped with data collector Dual Collect	5-7				Primary Crusher							_	_	_					
Section Section Post Collector Dust Collector D					 							_	_	_					
Section Sect	5-9	SRCID13	Screen House equipped with dust collector	Dust Collector	Primary Screener	9.00	350.00	0.0001	kg/Mg	1.07E-02	Marginal	_	_	_	AP42: Primary limestone screening with fabric filter	1.07E-02	9.09E-03		-
Set	5-10	SRCID14	Blend Silo 2 equipped with dust collector	Dust Collector		0.90	_	_	mg/m3	_	_	10	9.00E-03	Average	MOECC Small Baghouse	9.00E-03	7.65E-03	1.05E-03	Average
Section Sect	5-11	SRCID15	Blend Silo 3 equipped with dust collector	Dust Collector	_	6.60	_	_	mg/m3	_	_	20	1.32E-01	Average		1.32E-01	1.12E-01	1.54E-02	Average
Section Packbox Section Sect	5-12	SRCID16	Blend Silo 4(#3 Kiln Feed) equipped with dust collector	Dust Collector	_	4.50	_	_	mg/m3	_	_	10	4.50E-02	Average		4.50E-02	3.83E-02	5.24E-03	Average
F-15 SRCID29 Packhouse Truck # equipped with dust collector Dust C	5-13	SRCID17		Dust Collector	_	5.20	_	_	mg/m3	_	_	10	5.20E-02	Average		5.20E-02	4.42E-02	6.06E-03	Average
5-16 SRCID20 Packhouse both Packer equipped with dust collector	5-15	SRCID19		Dust Collector	_	0.42	_	_	mg/m3	_	_	10	4.20E-03	Average		4.20E-03	3.57E-03		
Section Packet equipped with dust collector Dust Co	5-16	SRCID20		Dust Collector	_	5.19	_	_	mg/m3	_	_	20	1.04E-01	Average		1.04E-01	8.82E-02	1.21E-02	Average
S-FIGURED Packhrouse Masonanry equipped with dust collector	5-17	SRCID21		Dust Collector	_	2.90	_	_	mg/m3	_	_	10	2.90E-02	Average		2.90E-02	2.47E-02		
5-20 SRCID26 Dock Silo 1 equipped with dust collector Dust Collector C	5-18	SRCID22	Packhouse Masonary equipped with dust collector	Dust Collector	_	1.20	_	_	mg/m3	_	_	10	1.20E-02	Average	MOECC Small Baghouse	1.20E-02	1.02E-02	1.40E-03	Average
S-20 SRCID26 Dock Silo 1 equipped with dust collector	5-19	SRCID23	Silo #4 equipped with dust collector	Dust Collector	_	6.60	_	_	mg/m3	_	_	20	1.32E-01	Average	MOECC Large Baghouse	1.32E-01	1.12E-01	1.54E-02	Average
SPCII/OZ Dock Silo 2 equipped with dust collector Dust Collector - 4.50 mg/m3 - 10	5-20	SRCID26	Dock Silo 1 equipped with dust collector	Dust Collector	_	4.50	_	_	mg/m3	_	_	10	4.50E-02	Average		4.50E-02	3.83E-02	5.24E-03	Average
SPC212 SRCID28 Dock \$10.3 equipped with dust collector	5-21	SRCID27	Dock Silo 2 equipped with dust collector	Dust Collector	_	4.50	_	_		_	_	10	4.50E-02	Average		4.50E-02	3.83E-02	5.24E-03	Average
Sec23 SRCID29 Dock Silo 4 equipped with dust collector Auto-collector Auto-collec	5-22	SRCID28		Dust Collector	_	4.50	_	_		_	_	10	4.50E-02	Average		4.50E-02	3.83E-02		
SRCID36 SrCiD36 SrCi Saw K-4 equipped with dust collector Dust Col	5-23	SRCID29	Dock Silo 4 equipped with dust collector	Dust Collector	_	4.50	_	_	mg/m3	_	_	10	4.50E-02	Average		4.50E-02	3.83E-02	5.24E-03	Average
SRCID36 Brick Saw K-4 equipped with dust collector	5-27	SRCID35	Clinker Ship Loading equipped with dust collector	Dust Collector	_	2.40	_	_	mg/m3	_	_	10	2.40E-02	Average	MOECC Small Baghouse	2.40E-02	2.04E-02	2.79E-03	Average
SRCID42 Coal Mill Dust Collector equipped with dust collector Dust C	5-28	SRCID36		Dust Collector	_	0.99	_	_	mg/m3	_	_	10	9.90E-03	Average		9.90E-03	8.42E-03	1.15E-03	Average
Sac	5-31	SRCID42	Coal Mill Dust Collector equipped with dust collector	Dust Collector	_	23.60	_	_	mg/m3	_	_	20	4.72E-01	Average		4.72E-01	4.01E-01	5.50E-02	Average
5-34 SRCID45 Ind. Firing - Weigh Feeder equipped with dust collector Dust Collector 0.25 — mg/m3 — 10 2.50E-03 Average MOECC Small Baghouse 2.50E-03 2.13E-03 2.91E-04 Average 5-35 SRCID46 Ind. Firing - Weigh Feeder equipped with dust collector Dust Collector — 0.25 — — mg/m3 — 10 2.50E-03 Average MOECC Small Baghouse 2.50E-03 2.13E-03 2.91E-04 Average 5-35 SRCID40 Ind. Firing - Weigh Feeder equipped with dust collector Dust Collector — 0.25 — — mg/m3 — — 10 2.50E-03 Average MOECC Small Baghouse 2.50E-03 2.13E-03 2.91E-04 Average 5-37 SRCID48 Coal Handling equipped with dust collector Dust Collector — 0.09 — — mg/m3 — — 10 9.00E-04 Average MOECC Small Baghouse 2.50E-02 1.81E-03 Marginal 5-38 SRCID49 <t< td=""><td>5-32</td><td>SRCID43</td><td>Indirect Firing - Coal Silo equipped with passive fabric filter</td><td>Passive Vent</td><td>_</td><td>1.40</td><td>_</td><td>_</td><td>mg/m3</td><td>_</td><td>_</td><td>10</td><td>1.40E-02</td><td>Average</td><td></td><td>1.40E-02</td><td>1.19E-02</td><td>1.63E-03</td><td>Average</td></t<>	5-32	SRCID43	Indirect Firing - Coal Silo equipped with passive fabric filter	Passive Vent	_	1.40	_	_	mg/m3	_	_	10	1.40E-02	Average		1.40E-02	1.19E-02	1.63E-03	Average
5-35 SRCID46 Ind. Firing - Weigh Feeder equipped with dust collector Dust Collector 0.25 — mg/m3 — 10 2.50E-03 Average MOECC Small Baghouse 2.50E-03 2.13E-03 2.91E-04 Average 5-36 SRCID47 Coal Handling equipped with dust collector Dust Collector — 0.09 — — mg/m3 — — 10 9.00E-04 Average MOECC Small Baghouse 9.00E-04 7.65E-04 1.05E-04 Average 5-37 SRCID49 New Secondary Crusher equipped with dust collector Dust Collector 0.09 — — mg/m3 — — 10 9.00E-04 Average MOECC Small Baghouse 9.00E-04 7.65E-04 1.05E-04 Average 5-38 SRCID49 New Secondary Crusher equipped with dust collector Dust Collector Secondary Crusher 5.20 350.00 1.60E-04 kg/Mg 1.56E-02 Marginal — — Average MOECC Small Baghouse 3.00E-02 2.55E-02 3.49E-03 Average	5-33	SRCID44	Indirect Firing - Coke Silo equipped with passive fabric filter	Passive Vent	_	1.40	_	_	mg/m3	_	_	10	1.40E-02	Average	MOECC Small Baghouse	1.40E-02	1.19E-02	1.63E-03	Average
5-35 SRCID46 Ind. Firing - Weigh Feeder equipped with dust collector Dust Collector — 0.25 — mg/m3 — 10 2.50E-03 Average MOECC Small Baghouse 2.50E-03 2.13E-03 2.91E-04 Average 5-36 SRCID47 Coal Handling equipped with dust collector Dust Collector — 0.09 — — mg/m3 — — 10 9.00E-04 Average MOECC Small Baghouse 9.00E-04 7.65E-04 1.05E-04 Average 5-37 SRCID49 New Secondary Crusher equipped with dust collector Dust Collector 5.09 350.00 1.60E-04 kg/Mg 1.56E-02 Marginal — — AP42: Secondary limestone screening and crushing with fabric filter 1.56E-02 1.81E-03 Marginal 5-39 SRCID51 Expansion - Limestone Storage 105-1 equipped with dust collector Dust Collector — 3.00 — — mg/m3 — — 10 3.00E-02 Average MOECC Small Baghouse 3.00E-02 2.55E-02 3.49E-03 Average	5-34	SRCID45	Ind. Firing - Weigh Feeder equipped with dust collector	Dust Collector	_	0.25	_	_	mg/m3	_	_	10	2.50E-03	Average	MOECC Small Baghouse	2.50E-03	2.13E-03	2.91E-04	Average
5-36 SRCID47 Coal Handling equipped with dust collector Dust Colle	5-35	SRCID46		Dust Collector	_	0.25	_	_	mg/m3	_	_	10	2.50E-03	Average		2.50E-03	2.13E-03	2.91E-04	Average
5-37 SRCID48 Coal Handling equipped with dust collector Dust Collector — 0.09 — — mg/m3 — 10 9.00E-04 Average MOECC Small Baghouse 9.00E-04 7.65E-04 1.05E-04 Average 5-38 SRCID49 New Secondary Crusher equipped with dust collector Dust Collector 5.20 350.00 1.60E-04 kg/Mg 1.56E-02 Marginal — — AP42: Secondary limestone screening and crushing with fust collector 1.56E-02 1.31E-03 Marginal 5-39 SRCID51 Expansion - Limestone Storage 105-1 equipped with dust collector Dust Collector — 3.00 — — mg/m3 — — 10 3.00E-02 Average MOECC Small Baghouse 3.00E-02 2.55E-02 3.49E-03 Average 5-40 SRCID55 Expansion - Bucket Elev. Dedust. 105-5 equipped with dust collector Dust Collector — 1.50 — — mg/m3 — — 10 1.50E-02 Average MOECC Small Baghouse 1.50E-02 2.13E-02 2.13E-02	5-36	SRCID47		Dust Collector	_	0.09	_	_	mg/m3	_	_	10	9.00E-04	Average	MOECC Small Baghouse	9.00E-04	7.65E-04	1.05E-04	Average
5-38 SRCID49 New Secondary Crusher equipped with dust collector Dust Collector Secondary Crusher 5.20 350.00 1.50E-02 Marginal Marginal — — with fabric filter — — with fabric filter — — Marginal Marginal 5-39 SRCID51 Expansion - Limestone Storage 105-1 equipped with dust collector Dust Collector — — — — 10 3.00E-02 Average MOECC Small Baghouse 3.09E-02 2.55E-02 3.49E-03 Average 5-40 SRCID55 Expansion - Bucket Elev. Dedust. 105-5 equipped with dust collector Dust Collector — — mg/m3 — — 10 1.50E-02 Average MOECC Small Baghouse 1.50E-02 1.75E-03 Average 5-41 SRCID58 Blend Silo 5 equipped with dust collector Dust Collector — 2.50 — — mg/m3 — — 10 2.50E-02 Average MOECC Small Baghouse 2.50E-02 2.91E-03 Average 5-42 SRCID61 Lime addition silo equipped	5-37	SRCID48		Dust Collector	_	0.09	_	_		_	_	10	9.00E-04	Average		9.00E-04	7.65E-04	1.05E-04	Average
5-39 SRCID51 Expansion - Limestone Storage 105-1 equipped with dust collector Dust Collector — 3.00 — — mg/m3 — — 10 3.00E-02 Average MOECC Small Baghouse 3.00E-02 2.55E-02 3.49E-03 Average 5-40 SRCID55 Expansion - Bucket Elev. Dedust. 105-5 equipped with dust collector Dust Collector — 1.50 — — mg/m3 — — 10 1.50E-02 Average MOECC Small Baghouse 1.50E-02 1.75E-03 Average 5-41 SRCID58 Blend Silo 5 equipped with dust collector Dust Collector — 2.50 — — mg/m3 — — 10 2.50E-02 Average MOECC Small Baghouse 2.50E-02 2.91E-03 Average 5-42 SRCID61 Lime addition silo equipped with dust collector Dust Collector — 0.56 — — mg/m3 — — 10 5.60E-03 Average MOECC Small Baghouse 5.60E-03 4.76E-03 6.52E-04 Average <td>5-38</td> <td>SRCID49</td> <td>New Secondary Crusher equipped with dust collector</td> <td>Dust Collector</td> <td>Secondary Crusher</td> <td>5.20</td> <td>350.00</td> <td>1.60E-04</td> <td>kg/Mg</td> <td>1.56E-02</td> <td>Marginal</td> <td>_</td> <td>_</td> <td>_</td> <td></td> <td>1.56E-02</td> <td>1.32E-02</td> <td>1.81E-03</td> <td>Marginal</td>	5-38	SRCID49	New Secondary Crusher equipped with dust collector	Dust Collector	Secondary Crusher	5.20	350.00	1.60E-04	kg/Mg	1.56E-02	Marginal	_	_	_		1.56E-02	1.32E-02	1.81E-03	Marginal
SRCIDS Expansion Success Expansion Success Expansion Success	5-39	SRCID51	Expansion - Limestone Storage 105-1 equipped with dust collector	Dust Collector	_	3.00	_		mg/m3	_	_	10	3.00E-02	Average		3.00E-02	2.55E-02	3.49E-03	
5-42 SRCID61 Lime addition silo equipped with dust collector	5-40	SRCID55	Expansion - Bucket Elev. Dedust. 105-5 equipped with dust collector	Dust Collector	_	1.50	_	_	mg/m3	_	_	10	1.50E-02	Average	MOECC Small Baghouse	1.50E-02	1.28E-02	1.75E-03	Average
The state of the s	5-41	SRCID58	Blend Silo 5 equipped with dust collector	Dust Collector		2.50			mg/m3			10	2.50E-02	Average	MOECC Small Baghouse	2.50E-02	2.13E-02	2.91E-03	Average
5-43 SRCID62 Pan conveyor equipped with dust collector	5-42	SRCID61	Lime addition silo equipped with dust collector	Dust Collector		0.56			mg/m3			10	5.60E-03	Average	MOECC Small Baghouse	5.60E-03	4.76E-03	6.52E-04	Average
	5-43	SRCID62	Pan conveyor equipped with dust collector	Dust Collector		3.30			mg/m3			10	3.30E-02	Average	MOECC Small Baghouse	3.30E-02	2.81E-02	3.84E-03	Average

Made By: LL Checked By: JJZ

Source ID	Model ID	Equipment ID/ Description	Dust Collector / Passive Vent	Process	Volumetric Flow Rate [Am³/s]	Maximum Throughput [Mg/hr]	SPM Emission Factor (kg/Mg)	Unit	SPM Emission Rate [g/s]	MOECC Quality Rating	SPM Emission Factor (mg/Am³)	SPM Emission Rate [g/s]	MOECC Quality Rating	Emission Estimate Source	SPM Modelled Emission Rate [g/s]	PM10 Emission Rate [g/s] ¹	Crystalline Silica Emission Rate [g/s]	MOECC Quality Rating
5-44	SRCID63	Truck load dust collector 2 equipped with dust collector- South scale	Dust Collector	_	0.94	_	_	mg/m3	_	_	10	9.40E-03	Average	MOECC Small Baghouse	9.40E-03	7.99E-03	1.09E-03	Average
5-45	SRCID64	Truck load dust collector 4 equipped with dust collector - South scale	Dust Collector	_	0.94	_	_	mg/m3	_	_	10	9.40E-03	Average	MOECC Small Baghouse	9.40E-03	7.99E-03	1.09E-03	
5-46	SRCID65	Truck Load dust collector 3 equipped with dust collector - East	Dust Collector	_	1.30	_	_	mg/m3	_	_	10	1.30E-02	Average	MOECC Small Baghouse	1.30E-02	1.11E-02	1.51E-03	Average
5-47	SRCID66	Expansion - Hopper Feedoweights equipped with dust collector	Dust Collector	_	6.00	_	_	mg/m3	_	_	20	1.20E-01	Average	MOECC Large Baghouse	1.20E-01	1.02E-01	1.40E-02	
5-48		Slag dryer equipped with dust collector	Dust Collector	-	9.20	_	_	mg/m3	_	I	20	1.84E-01	Average	MOECC Large Baghouse	1.84E-01	1.56E-01	2.14E-02	Average
5-49	SRCID68	#10 Mill Stack equipped with dust collector	Dust Collector	Cement Mill	10.40	85.00	0.0042	kg/Mg	9.92E-02	Marginal	_	_	_	AP42: Finish grinding mill with fabric filter	9.92E-02	8.43E-02		Marginal
5-50	SRCID69	Cement Dome dust collector	Dust Collector	_	6.1	_	_	mg/m3	_	I	20	1.23E-01	Average	MOECC Large Baghouse	1.23E-01	1.04E-01	1.43E-02	Average

¹ Assuming PM10 represents 85% of SPM

Source ID	6	Source Clinker Transfers
Process Description	Transfer of ready clinker from the kiln through conveyor system to	clinker storage
Operating Scenario	Clinker transferred at maximum operating capacity.	Limitations None

EMISSION CALCULATION

Production Rates:

Product drop into open conveyor C-11: 162.5 tonnes/hour

Conveyor S-9 (weathered

clinker): 187.5 tonnes/hour

Open conveyor C-11 drop point (from K3): 45.83 tonnes/hour

Methodology: US EPA AP-42 Emission Factor

US EPA AP-42 Section 11.19.2 - Crushed Stone Processing and Pulverized Mineral Processing (8/04)

Uncontrolled Emission Factor US EPA MOECC Emission Source Contaminant CAS Factor Quality Quality Rating Rating Marginal Conveyor Drops SPM 1.50E-03

Percent of Crystalline Silica in PM10 =

13.7%

Reference: AWMA - PM4 Crystalline Silica Emission Factors and Ambient Concentrations at Aggregate-Producing Sources in California (Richards et al, 2012)

Particle Size Distribution

Particle Size [µm]	Cumulative
SPM	
PM10	50%

Calculation Formula

Emission Rate = Emission Factor x Activity Rate x 1000 x 1/3600

Sample Calculation:												
	Emission Rate =	1.50E-03	kg	163	tonnes	1000	g	1	hr	(1-0.75)	6.77E-03	g
			tonne		hr		kg	3600	seconds			s

							EMISSION FA	ACTORS E	MISSION RAT	ES
Source ID	Equipment ID/ Description	Activity	Controlled	Control Method	Code	Maximum Capacity,	SPM	Control Efficiency	SPM	Crystalline Silica
	Description					[tonne/hr]	[kg/Mg] ¹		[g/s]	[g/s]
6-1	Clinker Storage Hall Left (Src 60 & 62)	Transfer Point	Yes	Building Enclosure	12	9	1.50E-03	90%	3.82E-04	2.62E-05
6-2	Clinker Storage Hall Middle (Src 60 & 62)	Transfer Point	Yes	Building Enclosure	12	9	1.50E-03	90%	3.82E-04	2.62E-05
6-3	Clinker Storage Hall Right (Src 60 & 62)	Transfer Point	Yes	Building Enclosure	12	9	1.50E-03	90%	3.82E-04	2.62E-05
6-4	Clinker Storage Hall East Right (Src 60 & 62)	Transfer Point	Yes	Building Enclosure	12	9	1.50E-03	90%	3.819E-04	2.62E-05
6-5	Clinker Storage Hall East Left (Src 60 & 62)	Transfer Point	Yes	Building Enclosure	12	9	1.50E-03	90%	3.819E-04	2.62E-05
6-6	K3 Clinker Handling (Src 52) (Product drop into open conveyor C-11)	Transfer Point	Yes	Building Enclosure	12	163	1.50E-03	90%	6.771E-03	4.64E-04
6-7	Clinker Screening S-9 (Src 58) Clinker (Conveyor S-9 product drops)	Transfer Point	Yes	Building Enclosure	12	163	1.50E-03	90%	6.77E-03	4.64E-04
6-8	Clinker Screening S-9 (Src 58) Weathered Clinker (Conveyor S-9 product drops)	Transfer Point	Yes	Building Enclosure	12	188	1.50E-03	90%	7.81E-03	5.35E-04
6-9	Outside Clinker Storage	Transfer Point	No	_	_	163	1.50E-03	0%	6.77E-02	4.64E-03
1 Emission factor rep	presents Particulate Matter with diameter < 100 μm			•		-	-	Total	9.10E-02	6.23E-03

Source ID NEG2

Source
Descripti Maintenance Welding
on

Process Description The facility uses 1555 lb (705.34 kg) yearly of 7018 rod, in which there is an exhaust fan in the welding shop that accounts for ~70% of the welding, the rest is throughout the plant

Operating

Scenario

70% within welding shop, rest throughout plant

Limitations

EMISSION CALCULATION

	•	•		1	=	7]
m	ISS	ions	using	MU	EC	C	ᅡ

Methodology:	Emission Factor
	1) Emission factor was obtained from U.S. EPA
	AP-42 Section 12.19
Source:	2) Safety Data Sheet for Easyarc 7018 MR,
	created by Lincoln Electric (2017)

	ISING WIDECC EF						
Welding Process	Elecrode Type	Annual Welding Rod Consumed [kg]*	Controls	Contaminant	CAS	Factor [g/kg]	Emissions [g/s]
				SPM	N/A	18.4	6.17E-04
				Chromium	7440-47-3	0.006	2.01E-07
SMAW	E7018	705.34	None	Hexavalent Chromium	N/A	ND	0.00E+00
				Cobalt	7440-48-4	0.001	3.35E-08
				Manganese	7439-96-5	1.03	3.46E-05
				Nickel	7440-02-0	0.002	6.71E-08
				Lead	7439-92-1	ND	ND

Emissions using EC from Safety Data Sheet provided from manufacturer

Welding Process	Elecrode Type	Annual Welding Rod Consumed [kg]*	Contaminant	CAS	% of SPM	Emission s [g/s]
			Iron	7439-89-6	100.00%	6.17E-04
			Limestone	1317-65-3	10.00%	6.17E-05
			Fluorides	16984-48-8	5.00%	3.09E-05
			Titanium			3.09E-05
			Dioxide	13463-67-7	5.00%	3.09E-05
			Manganese	7439-96-5	5.00%	3.09E-05
			Sodium			3.09E-05
			Silicate	1344-09-8	5.00%	3.09L-03
			Potassium			3.09E-05
SMAW	E7018	705.34	Silicate	1312-76-1	5.00%	3.09L-03
			Feldspar	68476-25-5	1.00%	6.17E-06
			Silicon	7440-21-3	1.00%	6.17E-06
			Ferric Oxide	1309-37-1	1.00%	6.17E-06
			Carboxymethyl			
			cellulous,			6.17E-06
			sodium salt	9004-32-4	1.00%	
			Quartz	14808-60-7	1.00%	6.17E-06
		I I	Hydroxyethyl	0004.00.0	4.000/	6.17E-06
***	L	given in lb (1550 lb) o	cellulous ·	9004-62-0	1.00%	

^{*}Note that the provided mass was given in lb (1550 lb), conversion was applied to obtain kg units

^{**} For conservatism, the higher range of percent content was used

Calculation Formula

Sample Calculation:											
Emission Rate Chromium =	705.3356	kg	0.006	g	1	year	1 day	1	hour	1	2.01294E-07 g
		year		kg	365	day	16 hour	3600	s		s
	'	,	1	٠ .		,	'				_

Source ID NEG1 Source Description Comfort Heating

Process The facility has both oil and gas fired furnaces for the purpose of comfort heating

Operating
Assume 24/7 operation of furnaces

As per table B-3B Ontario Guideline 10 (ESDM), heating units can only be considered negligible if they have less than 10 MJ/h

EMISSION CALCULATION

Methodology US EPA AP-42 Emission Factor

Source (natural gas):

Source (Fuel US EPA AP-42 Section 1.3 -Fuel Oil Combustion

Oil):

*Note it is being assumed that the fuel oil in use is No. 2 Field Oil (diesel)

				Uncont	rolled Emission I	Factor	
Source	Contaminant	CAS	Controls	Emission Factor	Emission Factor Unit	US EPA Quality Rating	MOECC Quality Rating
Comfort Heating (Small, uncontrolled) Natural Gas	NOx	10102-44-0	None	104.00	(lb/10^6 scf)	В	Above average
Comfort Heating (Distillate Oil)	NOx	10102-44-0	None	20.00	(lb/10^3 gal)	Α	Excellent

Calculation Formula

Emission Rate = Emission Factor x Heating Capacity x Usage x Conversion

Sam	ple Calculation:											_
	Emission Rate Unit 18 (natural gas)=	104.00	Ib	3.50E-04	10^6 scf	24	h	453.59	g	4.59E-03	g	
			10^6 scf		h	86400	s		lb		s	
				•			·					
	Emission Rate Unit 21 (oil)=	20.00	lb	1.48E-03	10^3 gal	24	h	453.59	g	3.73E-03	g	
- 1	` ,		10^3 gal		h	86400	s		lb		s	
	•	•	-	•		•	•			•		

UNIT#	LOCATION	SAP EQUIP.#	Suggested description	Functional Location	UNIT (BRAND MODEL)	Serial #	Fuel Type	VOLTAGE	COOLING CAPACITY	HEATING CAPACITY (BTU)	Heating Capacity (MJ/H)	Capacity (Heating Emission Capacity Rate (10^3 (g/s) gal)* NOx
UNIT 11	KILN 4 Pre Heater Bypass		A/C PHTWR BYPASS	U132-40-03810-01130	Comfort Air SMA18SA	NA		208/1/60	18000 CFM 410A, 1.5 T	on			
UNIT 18	Mobile Maintenance Shop		HEATER MOBILE MAINTENANCE SHOP 1	U132-40-03810-01130	Reznor UDAP350	BMB7943N088213X	Natural Gas	115V	NA	350,000	369.2695953	0.00035	0.0028 4.59E-03
UNIT 19	Mobile Maintenance Shop		HEATER MOBILE MAINTENANCE SHOP 2	U132-40-03810-01130	Reznor UDAP350	BMH79Y3N38990	Natural Gas	115V	NA	350,000	369.2695953	0.00035	0.0028 4.59E-03
UNIT 20	Mobile Maintenance Shop		HEATER MOBILE MAINTENANCE SHOP 3	U132-40-03810-01130	Reznor UDAP350	BMI79Y3N45767X	Natural Gas	115V	NA	350,000	369.2695953	0.00035	0.0028 4.59E-03
UNIT 21	Mobile Maintenance Shop		HEATER MOBILE MAINTENANCE SHOP 4	U132-40-03810-01130	Powrmatic Oil Fired Unit Heater - CH180	AR565321	Oil	115V	NA	185,000	195.1853575	0.00019	0.00148 3.73E-03
UNIT 22	Mobile Maintenance Shop		HEATER MOBILE MAINTENANCE SHOP 5	U132-40-03810-01130	Powrmatic Oil Fired Unit Heater - CH180	AR565322	Oil	115V	NA	184,000	194.1303015	0.00018	0.00147 3.71E-03
UNIT 23	Wash Bay		HEATER WASH BAY	U132-40-03810-01130	Internation Comfort - 2105E-2	D110500295		115V	NA	175,000	184.6347976	0.00018	0.0014 3.53E-03
UNIT 24	Oiler Shop		HEATER OILER SHOP 1	U132-40-03810-01130	International Comfort BMF125	239661		115V	NA	127,000	133.9921103	0.00013	0.00102 2.56E-03
UNIT 25	Oiler Shop		HEATER OILER SHOP 2	U132-40-03810-01130	Jackson & Church OL280-519	OL280-519		115V	NA	175,000	184.6347976	0.00018	0.0014 3.53E-03
UNIT 27	Maintenance Shop		HEATER MAINTENANCE SHOP	U132-40-03810-01130	Reflecto Ray 2700-24-17	16219		24VAC		120,000	126.6067184	0.00012	0.00096 2.42E-03
UNIT 29	Change Room	36642	HEATER CHANGEHOUSE (2535)	U132-40-03810-01130	Lincoln Barriere BOL169A	971227840	Oil	120		169000	178.3044617	0.00017	0.00135 3.41E-03
UNIT 33	Lab Furnace	36637	HEATER CHG/HSE FURNACE ROOM (4720	U132-40-03810-01130	Lincoln BOL-225A	9806 48829	Oil	115V		225,000	237.387597	0.00023	0.0018 4.54E-03
UNIT 34	Mobile Maintenance Shop		HEATER MOBILE MAINTENANCE SHOP 6	U132-40-03810-01130	Reznor UDAP350	BMI79Y3N4560Y	Natural Gas	115V		350,000	369.2695953	0.00035	0.0028 4.59E-03
UNIT 35	Store			U132-40-03810-01130	Modine PD 200AA0111	30011024797-6208	Natural Gas	120V		250000	263.7639966	0.00025	0.002 3.28E-03
*Note that bt	u was converted to scf off the approxi	mation that	1 scf (standard cubic foot) is 1000 BTU (Britisl	n thermal units), and BTU wa	as converted to gallon off the approximation that	a gallon is 124884.4 BTU	•		•	Т	otal NOx emission	ns comfort	heating: 4.91E-02
•			,	,,	- 11	•			Total (BTU)	3,010,000	l		

Made By: JDM Checked By: JJZ November 2022 2148080301

APPENDIX C

Supporting Information for Assessment of Negligibility

			Screening fo	Table C1 or Negligibility Su	ımmary			
Contaminant	CAS No.	Total Facility Emission Rate [g/s]		MECP POI Limit [μg/m³]		Source	Emission Threshold [g/s]	Negligibility Assessment
Acenaphthylene	208-96-8 67-64-1	2.67E-03 1.72E-02	24-hour 24-hour	0.1	— Sch. 3	De Minimus	4.348E-05 5.165E+00	Not Negligible
Acetone Aluminum	7429-90-5	5.89E-01	24-hour	11880 12	Sch. 3	Standard SL-JSL	5.105E+00 5.217E-03	Negligible Not Negligible
Ammonia Ammonium	7664-41-7 14798-03-9	7.19E+00 4.89E+00	24-hour 24-hour	100 14.5	Sch. 3 —	Standard Previously Approved MAXGLC	4.348E-02 6.304E-03	Not Negligible Not Negligible
Antimony	7440-36-0	1.21E-03	24-hour	25	Sch. 3	Standard	1.087E-02	Negligible
Arsenic Barium	7440-38-2 7440-39-3	3.84E-04 2.82E-02	24-hour 24-hour	0.3 10	Sch. 3 Sch. 3	Guideline Guideline	1.304E-04 4.348E-03	Not Negligible Not Negligible
Benzaldehyde	100-52-7	1.09E-03	24-hour	2	Sch. 3	SL-JSL	8.696E-04	Not Negligible
Benzene Benzene	71-43-2 71-43-2	7.26E-02 7.26E-02	Annual 24-hour	0.45 100	Sch. 3 Sch. 6	Standard DAV	1.021E-03 4.348E-02	Not Negligible —
Benzene	71-43-2	7.26E-02	Annual	4.5	_	AAV	1.021E-02	_
Benzo(a)anthracene Benzo(a)pyrene	56-55-3 50-32-8	9.93E-07 2.97E-06	24-hour Annual	0.1 0.00001	— Sch. 3	De Minimus Standard	4.348E-05 2.268E-08	Negligible Not Negligible
Benzo(a)pyrene	50-32-8	2.97E-06	24-hour	0.005	Sch. 6	DAV	2.174E-06	
Benzo(a)pyrene Benzo(b)fluoranthene	50-32-8 205-99-2	2.97E-06 1.27E-05	Annual 24-hour	0.0001 0.1	_	AAV De Minimus	2.268E-07 4.348E-05	— Negligible
Benzo(g,h,i)perylene	191-24-2	1.84E-06	24-hour	0.1	_	De Minimus	4.348E-05 4.348E-05	Negligible
Benzo(k)fluoranthene Benzoic acid	207-08-9 65-85-0	3.51E-06 1.63E-01	24-hour 24-hour	0.1 700	— Sch. 3	De Minimus Guideline	4.348E-05 3.043E-01	Negligible Negligible
Beryllium Binhamud	7440-41-7	1.60E-05	24-hour	0.01 60	Sch. 3	Standard	4.348E-06	Not Negligible
Biphenyl Bis(2-ethylhexyl)phthalate	92-52-4 117-81-7	2.81E-04 4.35E-03	1-hour 24-hour	50	Sch. 3 Sch. 3	Guideline Standard	1.071E-02 2.174E-02	Negligible Negligible
Bismuth	7440-69-9	4.56E-01	24-hour	2.5	Sch. 3	SL-JSL Cuideline	1.087E-03	Not Negligible
Bromomethane C3 benzenes	74-83-9 N/A-10	1.99E-03 1.18E-04	24-hour 24-hour	1350 0.1	Sch. 3 —	Guideline De Minimus	5.870E-01 4.348E-05	Negligible Not Negligible
C4 benzenes	N/A-11	2.72E-04	24-hour	0.1	_	De Minimus	4.348E-05	Not Negligible
C6 benzenes Cadmium	N/A-12 7440-43-9	4.17E-05 6.49E-04	24-hour 24-hour	0.1 0.025	— Sch. 3	De Minimus Standard	4.348E-05 1.087E-05	Negligible Not Negligible
Calcium Carbonate	1317-65-3	6.17E-05	24-hour	15	Sch. 3	SL-JSL	6.522E-03	Negligible
Calcium Oxide Carbon Dioxide	1305-78-8 124-38-9	5.51E+00 8.15E+04	24-hour 24-hour	10 255800	Sch. 3 Sch. 3	Standard SL-PA	4.348E-03 1.112E+02	Not Negligible Not Negligible
Carbon disulfide Carbon Monoxide	75-15-0	4.98E-03	24-hour 1/2-hour	330	Sch. 3	Guideline Standard	1.435E-01	Negligible
Carbon Monoxide Carboxymethyl cellulous, sodium salt	630-08-0 9004-32-4	6.01E+01 6.17E-06	24-hour	6000 120	Sch. 3 Sch. 3	Standard SL-MD	8.824E-01 5.217E-02	Not Negligible Negligible
Chloride	N/A-5	1.54E+01	24-hour	15.458	— O-b-0	Previously Approved MAXGLC	6.721E-03	Not Negligible
Chlorobenzene Chlorobenzene	108-90-7 108-90-7	7.24E-04 7.24E-04	1-hour 10-minute	3500 4500	Sch. 3 Sch. 3	Guideline Guideline	6.250E-01 4.866E-01	Negligible Negligible
Chromethane	74-87-3	1.72E-02	24-hour	320	Sch. 3	Standard	1.391E-01	Negligible
Chromium Chrysene	7440-47-3 218-01-9	1.28E-03 3.69E-06	24-hour 24-hour	0.5 0.1	Sch. 3 —	Standard De Minimus	2.174E-04 4.348E-05	Not Negligible Negligible
Cobalt	7440-48-4	1.33E-02	24-hour	0.1	Sch. 3	Guideline	4.348E-05	Not Negligible
Copper Crystalline Silica	7440-50-8 14808-60-7	1.21E-01 1.91E+00	24-hour 24-hour	50 5	Sch. 3 Sch. 3	Standard Guideline	2.174E-02 2.174E-03	Not Negligible Not Negligible
Dibenz(a,h)anthracene	53-70-3	1.41E-05	24-hour	0.1	— O-b-0	De Minimus	4.348E-05	Negligible
Di-n-butylphthalate Dioxins and Furans (TEQ)	84-74-2 N/A-4	1.90E-03 1.87E-09	24-hour 24-hour	50 0.0000001	Sch. 3 Sch. 3	Guideline Standard	2.174E-02 4.348E-11	Negligible Not Negligible
Ethylbenzene	100-41-4	5.78E-04 5.78E-04	24-hour	1000	Sch. 3	Standard	4.348E-01	Negligible
Ethylbenzene Feldspar	100-41-4 68476-25-5	6.17E-06	10-minute 24-hour	1900 2.5	Sch. 3 Sch. 3	Guideline SL-JSL	2.054E-01 1.087E-03	Negligible Negligible
Ferric Oxide	1309-37-1	6.17E-06	24-hour	25	Sch. 3	Standard	1.087E-02	Negligible
Fluoranthene Fluorene	206-44-0 86-73-7	1.99E-04 4.26E-04	24-hour 24-hour	0.1 0.1	_	De Minimus De Minimus	4.348E-05 4.348E-05	Not Negligible Not Negligible
Fluorides	16984-48-8	3.09E-05	24-hour	0.1 65		De Minimus Standard	4.348E-05	Negligible
Formaldehyde Freon 113	50-00-0 76-13-1	2.08E-02 2.26E-03	24-hour 24-hour	800000	Sch. 3 Sch. 3	Standard Standard	2.826E-02 3.478E+02	Negligible Negligible
Hydrogen chloride	7647-01-0	1.04E+01	24-hour	20	Sch. 3	Standard	8.696E-03	Not Negligible
Hydrogen Fluoride Hydrogen Fluoride	7664-39-3 7664-39-3	2.28E-02 2.28E-02	24-hour 30-day	1.72 0.69	Sch. 3 Sch. 3	Standard Standard	7.478E-04 7.775E-04	Not Negligible Not Negligible
Hydroxyethyl cellulous	9004-62-0	6.17E-06 1.97E-06	24-hour	15	Sch. 3	SL-JSL	6.522E-03	Negligible
Indeno(1,2,3-cd)pyrene Iron	193-39-5 7439-89-6	8.41E-01	24-hour 24-hour	0.1 4	— Sch. 3	De Minimus Standard	4.348E-05 1.739E-03	Negligible Not Negligible
Lead Lead	7439-92-1 7439-92-1	1.90E-02 1.90E-02	24-hour 30-day	0.5 0.2	Sch. 3 Sch. 3	Standard Standard	2.174E-04 2.254E-04	Not Negligible Not Negligible
Manganese	7439-92-1	2.24E-02	24-hour	0.4	Sch. 3	Standard	1.739E-04	Not Negligible
Magnesium Mercury	7439-95-4 7439-97-6	4.56E-01 4.48E-02	24-hour 24-hour	72 2	— Sch. 3	SL-MD Standard	3.130E-02 8.696E-04	Not Negligible Not Negligible
Methyl ethyl ketone	78-93-3	8.27E-04	24-hour	1000	Sch. 3	Standard	4.348E-01	Negligible
Methylene chloride Methylnaphthalene	75-09-2 90-12-0	2.26E-02 1.90E-04	24-hour 24-hour	220 35.5	Sch. 3 Sch. 3	Standard SL-JSL	9.565E-02 1.543E-02	Negligible Negligible
Naphthalene	91-20-3	4.99E-03	24-hour	22.5	Sch. 3	Guideline	9.783E-03	Negligible
Naphthalene Nickel	91-20-3 7440-02-0	4.99E-03 5.27E-03	10-minute Annual	50 0.04	Sch. 3 Sch. 3	Guideline Standard	5.406E-03 9.073E-05	Negligible Not Negligible
Nickel	7440-02-0	5.27E-03	24-hour	2	Sch. 6	DAV	8.696E-04	— —
Nickel Nitrate	7440-02-0 14797-55-8	5.27E-03 2.08E-01	Annual 24-hour	0.4 0.238		AAV Previously Approved MAXGLC	9.073E-04 1.033E-04	Not Negligible
Nitrogen Oxides	10102-44-0	1.19E+02	24-hour	200	Sch. 3	Standard	8.696E-02	Not Negligible
Nitrogen Oxides PCBs	10102-44-0 1336-36-3	1.19E+02 1.76E-04	1-hour 24-hour	400 0.15	Sch. 3 Sch. 3	Standard Guideline	7.143E-02 6.522E-05	Not Negligible Not Negligible
Phenanthrene	85-01-8	9.06E-03	24-hour	0.1	_	De Minimus	4.348E-05	Not Negligible
Phenol Phosphorus	108-95-2 7723-14-0	4.98E-03 1.29E-01	24-hour 24-hour	30 0.5	Sch. 3 Sch. 3	Standard SL-MD	1.304E-02 2.174E-04	Negligible Not Negligible
Potassium	7440-09-7	8.15E-01	24-hour	1	Sch. 3	SL-JSL	4.348E-04	Not Negligible
Potassium Silicate Pyrene	1312-76-1 129-00-0	3.09E-05 9.97E-05	24-hour 24-hour	5 0.1	Sch. 3 —	SL-MD De Minimus	2.174E-03 4.348E-05	Negligible Not Negligible
Selenium	7782-49-2	7.92E-03	24-hour	10	Sch. 3	Guideline	4.348E-03	Not Negligible
Silicon Silver	7440-21-3 7440-22-4	6.67E+00 3.52E-05	24-hour 24-hour	27 1	Sch. 3 Sch. 3	SL-PA Standard	1.174E-02 4.348E-04	Not Negligible Negligible
Sodium	7440-23-5	1.36E+00 3.09E-05	24-hour	2.067	_	Previously Approved MAXGLC	8.985E-04	Not Negligible
Sodium Silicate Styrene	1344-09-8 100-42-5	3.09E-05 1.82E-04	24-hour 24-hour	15 400	Sch. 3 Sch. 3	SL-JSL Standard	6.522E-03 1.739E-01	Negligible Negligible
Sulfate	14808-79-8	4.69E+00	24-hour	4.737	_	Previously Approved MAXGLC	2.059E-03	Not Negligible
Sulfur trioxide Sulphur dioxide	7446-11-9 7446-09-5	2.23E+00 1.36E+01	24-hour 24-hour	5 275	Sch. 3 Sch. 3	SL-JSL Standard	2.174E-03 1.196E-01	Not Negligible Not Negligible
Sulphur dioxide	7446-09-5 N/A	1.36E+01	1-hour	690	Sch. 3	Standard Standard	1.232E-01	Not Negligible
SPM Thallium	N/A 7440-28-0	2.01E+01 1.31E-04	24-hour 24-hour	120 0.5	Sch. 3 Sch. 3	Standard SL-JSL	5.217E-02 2.174E-04	Not Negligible Negligible
Tin Titanium	7440-31-5 7440-32-6	1.29E-01 2.16E-02	24-hour	10 120	Sch. 3	Standard Standard	4.348E-03 5.217E-02	Not Negligible
Titanium Titanium Dioxide	13463-67-7	2.16E-02 3.09E-05	24-hour 24-hour	34	Sch. 3 Sch. 3	Guideline	5.217E-02 1.478E-02	Negligible Negligible
Toluene	108-88-3	4.69E-03 4.56E-01	24-hour	2000 5	Sch. 3 —	Guideline SL-JSL	8.696E-01 2.174E-03	Negligible
Tungsten Vanadium	7440-33-7 7440-62-2	1.77E-04	24-hour 24-hour	2	— Sch. 3	Standard	8.696E-04	Not Negligible Negligible
Xylenes Xylenes	1330-20-7 1330-20-7	3.39E-03 3.39E-03	24-hour 10-minute	730 3000	Sch. 3 Sch. 3	Standard Guideline	3.174E-01 3.244E-01	Negligible Negligible
Zinc	7440-66-6	4.68E-01	24-hour	120	Sch. 3	Standard	5.217E-02	Not Negligible

Geographic Area Type	Rural
Distance from Source (m)	200

Averaging Period	Dispersion Factor (μg/m³ per g/s)
1-hour	2,800
10-minute	4,624
1/2-hour	3,400
24-hour	1,150
Annual	220
30-day	444

Distance from Course (m)	Dispersion Factor (µg/m³ per g/s)							
Distance from Source (m)	Urban	Rural						
20	8,700	10,000						
40	6,300	8,100						
60	4,600	5,900						
80	3,400	5,100						
100	2,600	4,500						
150	1,400	3,500						
200	900	2,800						
250	600	2,300						
300	450	1,900						
350	350	1,700						
400	300	1,500						
450	250	1,300						
500	200	1,150						
600	150	950						
700	120	800						
800	90	650						
900	80	575						
1000	70	500						

ref: Table B-1 Procedure for Preparing an ESDM Report

Emission Threshold [g/s] = $0.5 \times MECP \ POI \ Limit [\mu g/m^3] \ / \ Dispersion \ Factor [\mu g/m^3 per g/s]$

The Emission Threshold Calculation is in accordance with Section 7.1.2 of MECP's Procedure for Preparing an ESDM Report (March 2018).

 $\label{thm:compares} The \ negligibility \ assessment \ compares \ the \ calculated \ emission \ rate \ with \ the \ emission \ threshold.$

November 2022 2148080301

APPENDIX D

Supporting Information for Emission Rate Calculations

APPENDIX D – SUPPORTING INFORMATION FOR EMISSION RATE CALCULATIONS

Supporting Information for Emission Rate Calculations

In addition to the published emission factors used to estimate the emission rates in ESDM Report v.2.0, the following sources were used to estimate the emissions. These documents will be provided to the Ministry with the ECA Amendment Application:

- 1. Essroc 2016 Stage 2 Source Testing Report, AMEC Foster Wheeler, January 2017
- 2. Lehigh 2020 Source Testing Report, Wood, December 2020.
- 3. Lehigh 2021 Source Testing Report, Wood, November 2021.
- 4. 7018 Welding Rod SDS

Project No. 2148080301 November 2022 November 2022 2148080301

APPENDIX E

Supporting Information for Dispersion Source Parameters

Appendix E - Supporting Information for Dispersion Model Source Parameters

This appendix provides supporting information and sample calculations for the estimation of volume source parameters used in the AERMOD dispersion model.

Notes:

"NSSGA" = National Stone, Sand and Gravel Association "Modeling Fugitive Dust Sources" guidance document (2004)

"ADMGO" = Ministry of Environment and Climate Change "Air Dispersion Modelling Guideline for Ontario", Version 3.0 (February 2017)

"Picton TBR" = 2010 Technology Benchmark Report for Facility

Model ID	Source ID	Physical Description of Source	Release Height Above Grade [m]	Length of Side [m]	Volume Source Height [m]	Initial Lateral Dimension of Volume [m] (all single volume sources)	Initial Vertical Dimension of Volume [m]			
			1.5	3.05	15.01	0.71	6.98			
VFUG4	VFUG4 1-1 Haul Truck dump into Primary Crusher		Lehigh	Based off of width of truck	Height of Crusher	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	NSSGA, 5.3.7.6: vertical dimension equals height of source/2.15			
			13	1	13	0.23	0.47			
VFUG4A	1-2	S-2 to Crushed Limestone Pile	Lehigh	Based on width of conveyer	Picton TBR	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	2m drop to pile ADMGO, initial vertical dimension calculation for Elevated source not on or adjacent to a building. Vertical dimension = vertical source dimension/4.3			
			13	1	5	0.23	0.47			
COALSHIP	3-1	LSC and coke unloading from ship	Lehigh	Based on width of conveyer	Picton TBR	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	2m drop to pile s ADMGO, initial vertical dimension calculation for Elevated source not on or adjacent to a building. Vertical dimension = vertical source dimension/4.3			
			1.52	5	5	1.16	2.33			
COALTD	LTD 3-2 LSC and coke shore pi outloading (truck filling		Height of Truck	Truck Length	Picton TBR	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	NSSGA, 5.3.7.6: vertical dimension equals height of source/2.15			
			13	1	5	0.23	0.47			
GYPSHIP	00-Jan	Anhydride and crude gypsum unloading from ship	Lehigh	Based on width of conveyer	Picton TBR	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	2m drop to pile ADMGO, initial vertical dimension calculation for Elevated source not on or adjacent to a building. Vertical dimension = vertical source dimension/4.3			
		Anhydride and crude	1.52	5	5	1.16	2.33			
GYPSUMTD	3-4	gypsum shore pile outloading	Height of Truck	Truck Length	Picton TBR	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	NSSGA, 5.3.7.6: vertical dimension equals height of source/2.15			
		Silica, iron, and and	1.5	3.05	5	0.71	2.33			
MISCDROP	MISCDROP 3-5 alumina additive drop to pile and drop to storage hall		Height of Truck	Based off of width of truck	Picton TBR	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	NSSGA, 5.3.7.6: vertical dimension equals height of source/2.15			
		CKD drap to all and	1.5	5	5	1.16	2.33			
CDK	3-6	CKD drop to pile and outloading to sales (truck filling)	Height of Truck	Truck Length	Picton TBR	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	ls NSSGA, 5.3.7.6: vertical dimension equals height of source/2.15			

Model ID	Source ID	Physical Description of Source	Release Height Above Grade [m]	Length of Side [m]	Volume Source Height [m]	Initial Lateral Dimension of Volume [m] (all single volume sources)	Initial Vertical Dimension of Volume [m]
			1.5	3.05	5	0.71	2.33
VFUG5	3-7	Fuel drop into feed hopper	Height of Truck	Based off of width of truck	Picton TBR	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	NSSGA, 5.3.7.6: vertical dimension equals height of source/2.15
			13.5	25	27	5.81	12.56
CLINK1	6-1	Clinker Storage Hall Left (Src 60 & 62)	Half of height of clinker storage hall	Width of Clinker Storage Hall	Height of Clinker Storage Hall	Lehigh	Lehigh
			13.5	25	27	5.81	12.56
CLINK2	6-2	Clinker Storage Hall Middle (Src 60 & 62)	Half of height of clinker storage hall	Width of Clinker Storage Hall	Height of Clinker Storage Hall	Lehigh	Lehigh
			13.5	25	27	5.81	12.56
CLINK3	CLINK3 6-3 Clinker (S		Half of height of clinker storage hall	Width of Clinker Storage Hall	Height of Clinker Storage Hall	Lehigh	Lehigh
			13.5	25	27	5.81	12.56
VFUG11	VFUG11 6-4 Clinker Storage F Right (Src 60		Half of height of clinker storage hall	Width of Clinker Storage Hall	Height of Clinker Storage Hall	Lehigh	Lehigh
			13.5	25	27	5.81	12.56
VFUG12	6-5	Clinker Storage Hall East Left (Src 60 & 62)	Half of height of clinker storage hall	Width of Clinker Storage Hall	Height of Clinker Storage Hall	Lehigh	Lehigh
		I/2 Olimbra Handlin v (Con	7.5	16	15	3.72	6.98
VFUG6	6-6	K3 Clinker Handling (Src 52) (Product drop into open conveyor C-11)	Lehigh	Lehigh	Lehigh	NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	NSSGA, 5.3.7.6: vertical dimension equals height of source/2.15
		01.1 0 1.00.10	22	1.5	1.5	0.35	0.70
VFUG8A	6-7	Clinker Screening S-9 (Src 58) Clinker (Conveyor S-9 product drops)	S-9 Based on width of Picton TBR NSSGA, 5.3.7.6: lateral die		NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	NSSGA, 5.3.7.6: vertical dimension equals height of source/2.15	
		Clinker Screening S-9 (Src	22	1.5	1.5	0.35	0.70
VFUG8B	58) Weathered Clinker		NSSGA, 5.3.7.6: lateral dimension equals average width/4.3	NSSGA, 5.3.7.6: vertical dimension equals height of source/2.15			

Sample calculations (for VFUG8a)

Initial lateral dimension (m) =	Average width of conveyer 4.3	-
Initial lateral dimension (m) =	1.5 4.3	m
Initial lateral dimension (m) =	0.35	m
Initial vertical dimension (m) =	vertical source dimension 2.15	-
Initial vertical dimension (m) = Initial vertical dimension (m) =		m

Appendix E.2 Contaminant Screening and Modelling Assessment

Contaminant	CAS#	Averaging Period	Emi	nission Rates [g/s] M		Modelling Run	Averaging Period 1-hr	KILN4 1.84786	KILN4_BP	Maximum POI Concentration
							24-hr	0.3195	3.38137	[µg/m³]
			KILN4	KILN4_BP	Total	1	Annual	0.03452	0.29122	
SPM	N/A-1	24	6.21E+00	4.56E-01	6.67E+00		SPM	- 0.00102	0.20122	_
Acenaphthylene	208-96-8	24	2.67E-03	7.19E-08	2.67E-03	U	Init Run	0.001	0.000	8.54E-04
Aluminum	7429-90-5	24	2.94E-01	2.94E-01	5.89E-01		Init Run	0.094	0.995	1.09E+00
Ammonium	N/A-6	24	2.45E+00	2.45E+00	4.89E+00		Init Run	0.781	8.267	9.05E+00
Ammonia	7664-41-7	24	7.19E+00	1.57E-03	7.19E+00		Init Run	2.297	0.005	2.30E+00
Arsenic	7440-38-2	24	2.94E-04	8.98E-05	3.84E-04		Init Run	0.000	0.000	3.98E-04
Barium	7440-39-3	24	8.15E-03	2.01E-02	2.82E-02		Init Run	0.003	0.068	7.06E-02
Beryllium	7440-41-7	24	1.49E-05	1.01E-06	1.60E-05		Init Run	0.000	0.000	8.19E-06
Benzaldehyde	100-52-7	24	5.43E-04	5.43E-04	1.09E-03		Init Run	0.000	0.002	2.01E-03
Benzene	71-43-2	24	7.24E-02	1.48E-04	7.26E-02	U	Init Run	0.023	0.001	2.36E-02
Benzene	71-43-2	Annual	7.24E-02	1.48E-04	7.26E-02	U	Init Run	0.003	0.000	2.54E-03
Benzene	71-43-2	Annual	7.24E-02	1.48E-04	7.26E-02		Init Run	0.003	0.000	2.54E-03
Benzo(a)pyrene	50-32-8	24	2.94E-06	2.34E-08	2.97E-06		Init Run	0.000	0.000	1.02E-06
Benzo(a)pyrene	50-32-8	Annual	2.94E-06	2.34E-08	2.97E-06	U	Init Run	0.000	0.000	1.08E-07
Bismuth	7440-69-9	24	_	4.56E-01	4.56E-01	U	Init Run	_	1.542	1.54E+00
C3 benzenes	N/A-10	24	5.89E-05	5.89E-05	1.18E-04	U	Init Run	0.000	0.000	2.18E-04
C4 benzenes	N/A-11	24	1.36E-04	1.36E-04	2.72E-04	U	Init Run	0.000	0.000	5.03E-04
Cadmium	7440-43-9	24	1.90E-04	4.58E-04	6.49E-04	U	Init Run	0.000	0.002	1.61E-03
Calcium Oxide	1305-78-8	24	5.43E+00	7.67E-02	5.51E+00	Calc	ium Oxide	_	_	_
Carbon Dioxide	124-38-9	24	4.08E+04	4.08E+04	8.15E+04	Carb	on Dioxide	_	_	_
Carbon Monoxide	630-08-0	1/2	2.22E+01	1.33E-01	2.23E+01	Carbo	n Monoxide	_	_	_
Chloride	N/A-5	24	1.54E+01	4.98E-02	1.54E+01	U	Init Run	4.919	0.168	5.09E+00
Chromium	7440-47-3	24	1.77E-04	1.11E-03	1.28E-03	U	Init Run	0.000	0.004	3.80E-03
Cobalt	7440-48-4	24	1.23E-02	9.40E-04	1.33E-02	U	Init Run	0.004	0.003	7.12E-03
Copper	7440-50-8	24	1.18E-01	3.29E-03	1.21E-01	U	Init Run	0.038	0.011	4.87E-02
Crystalline Silica	14808-60-7	24	7.24E-01	5.31E-02	7.77E-01	Cryst	alline Silica	_	_	_
Dioxins and Furans (TEQ)	N/A-4	24	1.81E-09	6.13E-11	1.87E-09	Dioxins ar	nd Furans (TEQ)	_	_	_
Fluoranthene	206-44-0	24	1.99E-04	1.35E-07	1.99E-04		Init Run	0.000	0.000	6.41E-05
Fluorene	86-73-7	24	4.26E-04	2.80E-07	4.26E-04		Init Run	0.000	0.000	1.37E-04
Hydrogen chloride	7647-01-0	24	1.02E+01	2.17E-01	1.04E+01		gen chloride	_	_	_
Hydrogen Fluoride	7664-39-3	24	2.04E-02	2.42E-03	2.28E-02		Init Run	0.007	0.008	1.47E-02
Hydrogen Fluoride	7664-39-3	30-day	2.04E-02	2.42E-03	2.28E-02	U	Init Run	0.003	0.003	5.73E-03
Iron	7439-89-6	24	3.85E-01	4.56E-01	8.41E-01		Iron		_	_
Lead	7439-92-1	24	1.63E-02		1.90E-02		Init Run	0.005	0.009	1.45E-02
Lead	7439-92-1	30-day	1.63E-02	2.73E-03	1.90E-02		Init Run	0.002	0.004	5.64E-03
Magnesium	7439-95-4	24		4.56E-01	4.56E-01		Init Run		1.542	1.54E+00
Manganese	7439-96-5	24	1.95E-02	2.90E-03	2.24E-02		Init Run	0.006	0.010	1.60E-02
Mercury	7439-97-6	24	4.47E-02	1.03E-04	4.48E-02		Init Run	0.014	0.000	1.46E-02
Nickel	7440-02-0	24	4.78E-03	4.92E-04	5.27E-03		Init Run	0.002	0.002	3.19E-03
Nickel	7440-02-0	Annual	4.78E-03	4.92E-04	5.27E-03		Init Run	0.000	0.000	3.08E-04
Nickel	7440-02-0	Annual	4.78E-03	4.92E-04	5.27E-03		Init Run	0.000	0.000	3.08E-04
Nitrate	14797-55-8	24	1.04E-01	1.04E-01	2.08E-01		Init Run	0.033	0.352	3.85E-01
Nitrogen Oxides	10102-44-0	24	1.09E+02	1.48E+00	1.10E+02		gen Oxides	<u> </u>	_	<u> </u>
Nitrogen Oxides PCBs	10102-44-0 1336-36-3	1 24	1.09E+02 1.76E-04	1.48E+00 1.44E-07	1.10E+02 1.76E-04		gen Oxides Init Run	0.000	<u> </u>	 5.68E-05
Phenanthrene	85-01-8	24	9.06E-03	5.19E-07	9.06E-03		Init Run	0.000	0.000	2.90E-03
	7723-14-0	24	1.20E-01	8.92E-03	1.29E-01		Init Run	0.003	0.000	6.86E-02
Phosphorus Potassium	7440-09-7	24	4.08E-01	4.08E-01	8.15E-01		Init Run	0.038	1.378	1.51E+00
Potassium	129-00-0	24	9.96E-05	1.19E-07	9.97E-05		Init Run	0.000	0.000	3.22E-05
Selenium	7782-49-2	24	3.40E-03	4.53E-03	7.92E-03		Init Run	0.000	0.000	1.64E-02
Silicon	7440-21-3	24	6.21E+00	4.55E-05 4.56E-01	6.67E+00		Init Run	1.985	1.542	3.53E+00
Sodium	7440-21-3	24	9.06E-01	4.56E-01	1.36E+00		Init Run	0.289	1.542	1.83E+00
Sulfate	14808-79-8	24	4.53E+00	1.63E-01	4.69E+00		Init Run	1.447	0.551	2.00E+00
Sulphur dioxide	7446-09-5	24	1.22E+01	2.47E-01	1.25E+01		nur dioxide	— 1.44 <i>1</i>	0.551	Z.00L100
Sulphur dioxide	7446-09-5	1	1.22E+01	2.47E-01	1.25E+01	<u></u>	nur dioxide			<u>_</u>
Sulfur trioxide	7446-11-9	24	1.90E+00	3.31E-01	2.23E+00		ur trioxide	<u> </u>	<u> </u>	
Tin	7440-31-5	24	1.23E-01	6.23E-03	1.29E-01		Init Run	0.039	0.021	6.03E-02
Tungsten	7440-33-7	24	—	4.56E-01	4.56E-01		Init Run	<u> </u>	1.542	1.54E+00
Zinc	7440-66-6	24	1.22E-02	4.56E-01	4.68E-01		Init Run	0.004	1.542	1.55E+00

Sample Calculation

Acenaphthylene POI Concentration= 8.53E-04 ug/m3

November 2022 2148080301

APPENDIX F

Dispersion Modelling Files (provided as electronic zipped files)

November 2022 2148080301

APPENDIX G

Transitional Operating Conditions

115|) GOLDER APPENDIX G - TRANSITIONAL OPERATING CONDITIONS

Transitional operating conditions - Summary

The following appendix includes the following documents:

- 18107307 Lehigh Picton ESDM Mar2019 Appendix G TOC Assessment: This document was prepared as the first transitional operating conditions assessment and describes how the scenario is assessed.
- 2. **2019 CEMS Emissions Rates:** An update of the assessment based on the 2019 CEMS data was completed. NOx and SO₂ were updated and the maximum emissions from 2019 were carried forward to Table 2b and Table 5b for ESDM v.1.2.
- 3. **2020 CEMS Emissions Rates:** An update of the assessment based on the 2020 CEMS data was completed. NOx and SO₂ were updated and the maximum emissions from 2020 were carried forward to Table 2b and Table 5b for ESDM v.1.3.
- 4. **2021 CEMS Emissions Rates:** An update of the assessment based on the 2021 CEMS data was completed. CO, NOx and SO₂ were updated and the maximum emissions from 2021 were carried forward to Table 2b and Table 5b for ESDM v.1.4 and v2.0.

Project No. 2148080301 1/1

TECHNICAL MEMORANDUM

DATE April 2, 2019 **Project No.** 18107307 (3000)

TO Mr. Nick Papanicolaou, Lehigh Hanson Materials Limited

CC Ms. Camille Taylor

FROM Mr. Jamie McEvoy

EMAIL jmcevoy@golder.com

APPENDIX G TO THE EMISSION SUMMARY AND DISPERSION MODELLING REPORT-: TRANSITIONAL OPERATING CONDITIONS ASSESSMENT

To assess compliance with section 10 of Ontario Regulation 419/05 which came into effect April 1, 2018, the following appendix has been prepared to complete the Emission Summary and Dispersion Modelling (ESDM) Report for Lehigh Hanson Materials Limited (Lehigh).

The assessment of the transitional operating conditions (TOC) is based on the Kiln 4 and Kiln4_BP Continuous Emission Monitoring System (CEMS) data that was provided by Lehigh on 14 Dec 2018. TOC is defined as follows (https://ero.ontario.ca/notice/013-0903):

Transitional operating conditions (TOC)

TOC is an operating scenario that would result in the highest concentration of a contaminant at a point of impingement that results from a facility's emission to air. With this regulatory change, Lehigh is required to assess emissions of all contaminants during normal operations (including operating at maximum design capacity), start-up operating conditions, and shutdown operating conditions.

This TOC assessment was limited to the emissions monitored by the CEMS on Kiln 4 and Kiln4 BP:

- nitrogen oxides (NOx);
- sulphur dioxide (SO₂);
- carbon monoxide (CO);
- suspended particulate matter (SPM), measured as opacity.

At this time, there is no data to assess TOC from Kiln 3. The emissions from Kiln 3 were estimated using the AP-42 Chapter 11.6 emission factors. The use of the AP-42 emission factors for the emissions estimates in the Environmental Compliance Approval (ECA) amendment application, was completed at the request of the Ontario Ministry of the Environment, Conservation and Parks (Ministry) during the review of the ECA amendment application. It should be noted that in general the CEMS data presented in this TOC assessment has higher emissions rates than the ones calculated using the AP-42 emission factors.

Golder Associates Ltd. 1931 Robertson Road Ottawa, Ontario, K2H 5B7 Canada

T: +1 613 592 9600 +1 613 592 9601

The estimated maximum TOC emissions are presented in Table G1 and the results of modeling the TOC emissions using the latest Lehigh Facility AERMOD models in Table G2. The contaminants assessed remain below the current point of impingement (POI) limits (ACB list, April 2018). The 1-hour SO_2 POI is 73% of the 1-hour limit of 690 ug/m3 during TOC, compared to 59% during normal operations. As a reminder, the concentration results are highly influenced by Kiln 3, which has much poorer dispersion than Kiln 4. Based on the CEMS data provided for this assessment, the Facility can demonstrate compliance with s.10 O. Reg. 419/05.

JDM/CST/Ic

https://golderassociates.sharepoint.com/sites/31534g/technical work/p3000 - toc assessment/18107307 lehigh picton esdm mar2019 - appendix g - toc assessment.docx

Attachments: G1 – Source Summary Table – TOC

G2 – Emission Summary Table - TOC G3 - CEMS data (provided by Lehigh)

March 2019 18107307

Table G1 ource Summary Table - TOC

	Source Summary Table - TOC																				
					Source Parameters									Emission Data							
Source ID	Model Source ID	Lehigh ID	Source Description	Stack Volumetric Flow Rate [Am³/s]	Stack Velocity [m/s]	Stack Exit Gas Temperature [°C]	Stack Inner	Stack Height Above Grade [m]	Above Roof	Location [X	Source Location [Y Coordinate]	Contaminant	CAS No.	Averaging Period [hours]	Maximum Emission Rate [g/s]	Emission Estimating Technique	Emissions Data Quality	Percentage of Overall Emissions [%]			
Kilns																					
4-1	KILN3	1	Kiln 3 Stack with baghouse	79	17	200	2.4	35.0	N/A	329949	4880085	SPM	N/A-1	24	1.28E+00	EF	Marginal	5%			
4-1												Carbon Monoxide	630-08-0	1/2	1.41E+00	EF	Marginal	1%			
4-1												Nitrogen Oxides	10102-44-0	1, 24	3.83E+01	EF	Marginal	24%			
4-1												Sulphur dioxide	7446-09-5	1, 24	6.26E+01	EF	Marginal	18%			
4-2	KILN4	9	Kiln 4 Stack with ESPs + Emissions from 2 Loshi Mills (raw mill) directed to the ESP	207	15	120	4.2	70.8	N/A	330054	4879945	SPM	N/A-1	24	1.08E+01	EF	Uncertain	43%			
4-2												Carbon Monoxide	630-08-0	1/2	9.36E+01	ST	Highest	69%			
4-2												Nitrogen Oxides	10102-44-0	1, 24	1.02E+02	ST	Highest	65%			
4-2												Sulphur dioxide	7446-09-5	1, 24	2.79E+02	ST	Highest	79%			
4-5	KILN4_BP	40	Kiln 4 Bypass Stack with baghouse	23	13	120	1.5	83.2	N/A	330099	4880073	SPM	N/A-1	24	4.56E-01	EF	Uncertain	2%			
4-5												Carbon Monoxide	630-08-0	1/2	3.24E+00	ST	Highest	2%			
4-5												Nitrogen Oxides	10102-44-0	1, 24	7.37E+00	ST	Highest	5%			
4-5												Sulphur dioxide	7446-09-5	1, 24	1.16E+01	ST	Highest	3%			

Notes: "EF" = Emission Factor, "ST" = Source Testing, "EC" = Engineering Calculation

The TOC assessment was limited to nitrogen oxides, carbon monoxide, sulphur dioxide and suspended particulate matter from Kiln 3, Kiln 4 and Kiln 4_BP. All other sources which shared these compounds were considered in the dispersion modelling.

March 2019 18107307

Table G2
Emission Summary Table - TOC

							iiiissioii Suiiii	nary rabio						
Contaminant	CAS No.	Total Facility Emission Rate [g/s]	Air Dispersion Model Used	Maximum POI Concentration [µg/m³]	Averaging Period [hours]	MECP POI Limit [µg/m³]	Limiting Effect	Sch. 2 or Sch. 3	Source	Benchmark	% of POI Limit	Notes	Model Run Name	Version Date of ACB List
SPM	N/A-1	2.54E+01	AERMOD (v. 16216R)	4.26E+01	24	120	Visibility	Sch. 3	Standard	B1	35%		SPM-TOC	Apr-18
Carbon Monoxide	630-08-0	1.36E+02	AERMOD (v. 16216R)	1.55E+02	1/2	6000	Health		Standard	B1	3%	Note 9	Carbon Monoxide- TOC	Apr-18
Nitrogen Oxides	10102-44-0	1.57E+02	AERMOD (v. 16216R)	1.14E+02	24	200	Health	Sch. 3	Standard	B1	57%	Notes 2, 17	Nitrogen Oxides-TOC	Apr-18
Nitrogen Oxides	10102-44-0	1.57E+02	AERMOD (v. 16216R)	2.87E+02	1	400	Health	Sch. 3	Standard	B1	72%	Notes 2, 17	Nitrogen Oxides-TOC	Apr-18
Sulphur dioxide	7446-09-5	3.54E+02	AERMOD (v. 16216R)	1.85E+02	24	275	Health & Vegetation	Sch. 3	Standard	B1	67%	Effective until July 1, 2023 Note 2 URT - Note 4, Table 4	Sulphur dioxide -TOC	Apr-18
Sulphur dioxide	7446-09-5	3.54E+02	AERMOD (v. 16216R)	5.06E+02	1	690	Health & Vegetation	Sch. 3	Standard	B1	73%	Effective until July 1, 2023 Note 2 URT - Note 4, Table 4	Sulphur dioxide -TOC	Apr-18

G3 CEMS Summary	T	T			
Date/Time		Actual Flow (m³/hr)		Closest Kiln Stop	Closest Kiln Start
10-Mar-18 12:00:00		712211.0625		Date: 09-Mar-18 00:00:00; Code Description: Other - Undefined	Date: 09-Mar-18 20:15:00; Code Description: Other - Undefined
26-Apr-18 20:00:00		700769.0625		Date: 10-Apr-18 05:03:00; Code Description: Other-Emission limits	Date: 10-Apr-18 18:33:00; Code Description: Other-Emission limits
26-Apr-18 21:00:00				Date: 10-Apr-18 05:03:00; Code Description: Other-Emission limits	Date: 10-Apr-18 18:33:00; Code Description: Other-Emission limits
25-Aug-18 12:00:00		719131.4375	199.7587326	Date: 16-Aug-18 16:06:00; Code Description: Other-Power cut/drop-power contract	Date: 16-Aug-18 20:42:00; Code Description: Other-Power cut/drop-power contract
14-Nov-18 21:00:00	338.0745544	666089.875	185.0249653	Date: 06-Nov-18 02:34:00; Code Description: Preheater-Kiln feed-scale	Date: 06-Nov-18 07:21:00; Code Description: Preheater-Kiln feed-scale
	368.9007263	666089.875			
rogen Oxides	102.472424	g/s			
Date/Time	Max Stack SO2 Events (kg/h)	Actual Flow (m³/hr)		Closest Kiln Stop	Closest Kiln Start
05-Apr-18 15:00:00		671102.1875		Date: 04-Apr-18 15:25:00; Code Description: Power loss-Power supply	Date: 04-Apr-18 18:59:00; Code Description: Power loss-Power supply
05-Apr-18 16:00:00		689662.4375		Date: 04-Apr-18 15:25:00; Code Description: Power loss-Power supply	Date: 04-Apr-18 18:59:00; Code Description: Power loss-Power supply
10-Jul-18 16:00:00	992.0921631	662965.5625		Date: 09-Jul-18 15:21:00; Code Description: Other-Power cut/drop-power contract	Date: 10-Jul-18 00:55:00; Code Description: Other-Power cut/drop-power contract
10-Jul-18 17:00:00		630205.6875		Date: 09-Jul-18 15:21:00; Code Description: Other-Power cut/drop-power contract	Date: 10-Jul-18 00:55:00; Code Description: Other-Power cut/drop-power contract
24-Aug-18 19:00:00				Date: 16-Aug-18 16:06:00; Code Description: Other-Power cut/drop-power contract	Date: 16-Aug-18 20:42:00; Code Description: Other-Power cut/drop-power contract
_ : / tug	1003.973206			paner to ring to tologico, como possipheni enter t ener entra pener continue.	partition ray to 20112100, boar 20001 partition out of barrard points out made
lphur dioxide	278.881446				
	Max CO Mass Rate (kg/h)	Actual Flow (m³/hr)		Closest Kiln Stop	Closest Kiln Start
21-Aug-18 03:00:00		` ′		Date: 16-Aug-18 16:06:00; Code Description: Other-Power cut/drop-power contract	Date: 16-Aug-18 20:42:00; Code Description: Other-Power cut/drop-power contract
14-Nov-18 05:00:00		640775.6875		Date: 06-Nov-18 02:34:00; Code Description: Preheater-Kiln feed-scale	Date: 06-Nov-18 07:21:00; Code Description: Preheater-Kiln feed-scale
14-Nov-18 07:00:00		662769.9375		Date: 06-Nov-18 02:34:00; Code Description: Preheater-Kiln feed-scale	Date: 06-Nov-18 07:21:00; Code Description: Preheater-Kiln feed-scale
14-Nov-18 18:00:00		671847.75		Date: 06-Nov-18 02:34:00; Code Description: Preneater-Kiln feed-scale	Date: 06-Nov-18 07:21:00; Code Description: Preheater-Klin feed-scale Date: 06-Nov-18 07:21:00; Code Description: Preheater-Klin feed-scale
14-Nov-18 19:00:00				Date: 06-Nov-18 02:34:00; Code Description: Preheater-Kiln feed-scale	Date: 06-Nov-18 07:21:00; Code Description: Preheater-Kiln feed-scale
	336.9766184				
rbon Monoxide	93.60461621				
	Max Stack PM Mass Rate Even			Closest Kiln Stop	Closest Kiln Start
02-May-18 00:00:00		643722.3125		Date: 10-Apr-18 05:03:00; Code Description: Other-Emission limits	Date: 10-Apr-18 18:33:00; Code Description: Other-Emission limits
25-Jul-18 11:00:00		739146		Date: 24-Jul-18 14:48:00; Code Description: Other-Power cut/drop-power contract	Date: 24-Jul-18 23:53:00; Code Description: Other-Power cut/drop-power contract
03-Aug-18 10:00:00		600563.375		Date: 24-Jul-18 14:48:00; Code Description: Other-Power cut/drop-power contract	Date: 24-Jul-18 23:53:00; Code Description: Other-Power cut/drop-power contract
03-Aug-18 11:00:00		729284.625		Date: 24-Jul-18 14:48:00; Code Description: Other-Power cut/drop-power contract	Date: 24-Jul-18 23:53:00; Code Description: Other-Power cut/drop-power contract
21-Sep-18 19:00:00				Date: 21-Sep-18 17:29:00; Code Description: Power loss-Power supply	Date: 21-Sep-18 18:45:00; Code Description: Power loss-Power supply
	38.90607519				
'M	10.80724311				
	Max Bypass NOX Events (kg/h)			Closest Kiln Stop	Closest Kiln Start
14-Apr-18 16:00:00	26.52	79039.1		Date: 10-Apr-18 05:03:00; Code Description: Other-Emission limits	Date: 10-Apr-18 18:33:00; Code Description: Other-Emission limits
16-Apr-18 11:00:00	25.29	72841.97		Date: 10-Apr-18 05:03:00; Code Description: Other-Emission limits	Date: 10-Apr-18 18:33:00; Code Description: Other-Emission limits
14-Apr-18 18:00:00	24.66	74756.09		Date: 10-Apr-18 05:03:00; Code Description: Other-Emission limits	Date: 10-Apr-18 18:33:00; Code Description: Other-Emission limits
05-Nov-18 13:00:00	23.48	84589.41		Date: 30-Oct-18 00:00:00; Code Description: Gas cleaning-Mechanical	Date: 30-Oct-18 01:32:00; Code Description: Gas cleaning-Mechanical
14-Apr-18 17:00:00	23.1	75896.23		Date: 10-Apr-18 05:03:00; Code Description: Other-Emission limits	Date: 10-Apr-18 18:33:00; Code Description: Other-Emission limits
	26.52			, ,	
rogen Oxides	7.366666667	a/s			
		3			
Date/Time	Max Bypass SO2 Events (kg/h)	Actual Flow (m³/hr)		Closest Kiln Stop	Closest Kiln Start
02-Apr-18 07:00:00				Date: 22-Mar-18 07:18:00; Code Description: Other-Emission limits	Date: 22-Mar-18 18:19:00; Code Description: Other-Emission limits
03-Apr-18 23:00:00				Date: 22-Mar-18 07:18:00; Code Description: Other-Emission limits	Date: 22-Mar-18 18:19:00; Code Description: Other-Emission limits
31-Mar-18 20:00:00		47247.41		Date: 22-Mar-18 07:18:00; Code Description: Other-Emission limits	Date: 22-Mar-18 18:19:00; Code Description: Other-Emission limits
31-Mar-18 21:00:00		47992.76		Date: 22-Mar-18 07:18:00; Code Description: Other-Emission limits	Date: 22-Mar-18 18:19:00; Code Description: Other-Emission limits
31-Mar-18 23:00:00				Date: 22-Mar-18 07:18:00; Code Description: Other-Emission limits	Date: 22-Mar-18 18:19:00; Code Description: Other-Emission limits
31-IVIAI-10 23.00.00	41.61			Date. 22 Mai 10 01.10.00, Odde Description. Other-Emission limits	Date. 22 Mai 10 10.19.00, Odde Description. Other-Emission IIIIIIIs
lphur dioxide	11.55833333				
	Max Bypass CO Events (kg/h)			Classet Vila Stan	Cleanat Vila Ctaut
·	LIVIAX BYDASS L.U EVANTS (VA/h)			Closest Kiln Stop	Closest Kiln Start
Date/Time		00400 50		Date: 18-Sep-18 15:27:00; Code Description: Power loss-Power supply	Date: 18-Sep-18 19:28:00; Code Description: Power loss-Power supply
Date/Time 20-Sep-18 12:00:00	11.66083013	69168.52		D . 100 10150700 0 1 D D	D + 10 0 10 10 00 00 0 1 D 1 ii D 1 D
Date/Time 20-Sep-18 12:00:00 20-Sep-18 09:00:00	11.66083013 10.72202798	68037.17		Date: 18-Sep-18 15:27:00; Code Description: Power loss-Power supply	Date: 18-Sep-18 19:28:00; Code Description: Power loss-Power supply
Date/Time 20-Sep-18 12:00:00 20-Sep-18 09:00:00 20-Sep-18 10:00:00	11.66083013 10.72202798 10.69613765	68037.17 68603.45		Date: 18-Sep-18 15:27:00; Code Description: Power loss-Power supply	Date: 18-Sep-18 19:28:00; Code Description: Power loss-Power supply
Date/Time 20-Sep-18 12:00:00 20-Sep-18 09:00:00 20-Sep-18 10:00:00 20-Sep-18 11:00:00	11.66083013 10.72202798 10.69613765 10.58180951	68037.17 68603.45 67729.13		Date: 18-Sep-18 15:27:00; Code Description: Power loss-Power supply Date: 18-Sep-18 15:27:00; Code Description: Power loss-Power supply	Date: 18-Sep-18 19:28:00; Code Description: Power loss-Power supply Date: 18-Sep-18 19:28:00; Code Description: Power loss-Power supply
Date/Time 20-Sep-18 12:00:00 20-Sep-18 09:00:00 20-Sep-18 10:00:00	11.66083013 10.72202798 10.69613765 10.58180951	68037.17 68603.45 67729.13 69341.48		Date: 18-Sep-18 15:27:00; Code Description: Power loss-Power supply	Date: 18-Sep-18 19:28:00; Code Description: Power loss-Power supply

LM8 Closest Stop	LM8 Closest Start	LM9 Closest Stop	LM9 Closest Start
Date: 10-Mar-18 10:58:00; Code Description: Separator-Mechanical	Date: 10-Mar-18 03:10:00; Code Description: Planned outage-Annual Overhaul	Date: 10-Mar-18 00:00:00; Code Description: Planned outage-Annual Overhaul	Date: 10-Mar-18 01:39:00; Code Description: Planned outage-Annual Overhaul
Date: 26-Apr-18 15:46:00; Code Description: Other - Process	Date: 26-Apr-18 15:54:00; Code Description: Other - Process	Date: 26-Apr-18 12:34:00; Code Description: Other - Process	Date: 26-Apr-18 12:39:00; Code Description: Other - Process
Date: 26-Apr-18 15:46:00; Code Description: Other - Process	Date: 26-Apr-18 15:54:00; Code Description: Other - Process	Date: 26-Apr-18 12:34:00; Code Description: Other - Process	Date: 26-Apr-18 12:39:00; Code Description: Other - Process
Date: 25-Aug-18 11:32:00; Code Description: Conveying-Air Slide	Date: 23-Aug-18 01:22:00; Code Description: Feed System-Other	Date: 24-Aug-18 23:03:00; Code Description: Other - Mechanical	Date: 24-Aug-18 23:06:00; Code Description: Other - Mechanical
Date: 14-Nov-18 07:36:00; Code Description: Other - Process	Date: 14-Nov-18 07:39:00; Code Description: Other - Process	Date: 14-Nov-18 13:15:00; Code Description: Other - Process	Date: 14-Nov-18 13:20:00; Code Description: Other - Process

LM8 Closest Stop	LM8 Closest Start	LM9 Closest Stop	LM9 Closest Start
Date: 04-Apr-18 21:11:00; Code Description: Other - Process	Date: 04-Apr-18 21:14:00; Code Description: Other - Process	Date: 04-Apr-18 15:25:00; Code Description: Power loss-Thunder storm	Date: 04-Apr-18 21:12:00; Code Description: Power loss-Thunder storm
Date: 05-Apr-18 15:15:00; Code Description: Planned outage/Maintenance outage	Date: 04-Apr-18 21:14:00; Code Description: Other - Process	Date: 05-Apr-18 15:15:00; Code Description: Planned outage/Maintenance outage	Date: 04-Apr-18 21:12:00; Code Description: Power loss-Thunder storm
Date: 10-Jul-18 15:40:00; Code Description: Power Savings - on peak hours only	Date: 10-Jul-18 13:28:00; Code Description: Other - Process	Date: 10-Jul-18 15:40:00; Code Description: Power Savings - on peak hours only	Date: 10-Jul-18 15:40:00; Code Description: Mill-Mechanical
Date: 10-Jul-18 15:40:00; Code Description: Power Savings - on peak hours only	Date: 10-Jul-18 13:28:00; Code Description: Other - Process	Date: 10-Jul-18 15:40:00; Code Description: Power Savings - on peak hours only	Date: 10-Jul-18 15:40:00; Code Description: Mill-Mechanical
Date: 23-Aug-18 01:19:00; Code Description: Feed System-Other	Date: 23-Aug-18 01:22:00; Code Description: Feed System-Other	Date: 24-Aug-18 18:57:00; Code Description: Other - Mechanical	Date: 24-Aug-18 18:56:00; Code Description: Other - Mechanical

LM8 Closest Stop	LM8 Closest Start	LM9 Closest Stop	LM9 Closest Start
Date: 20-Aug-18 07:29:00; Code Description: Raw Mill - Lack of raw feed	Date: 20-Aug-18 12:55:00; Code Description: Raw Mill - Lack of raw feed	Date: 21-Aug-18 00:33:00; Code Description: Other - Process	Date: 21-Aug-18 00:38:00; Code Description: Other - Process
Date: 13-Nov-18 11:49:00; Code Description: Mill-Mechanical	Date: 13-Nov-18 20:43:00; Code Description: Mill-Mechanical	Date: 13-Nov-18 16:39:00; Code Description: Other - Process	Date: 13-Nov-18 16:43:00; Code Description: Other - Process
Date: 13-Nov-18 11:49:00; Code Description: Mill-Mechanical	Date: 13-Nov-18 20:43:00; Code Description: Mill-Mechanical	Date: 14-Nov-18 06:19:00; Code Description: Feed System-Other	Date: 14-Nov-18 06:25:00; Code Description: Feed System-Other
Date: 14-Nov-18 07:36:00; Code Description: Other - Process	Date: 14-Nov-18 07:39:00; Code Description: Other - Process	Date: 14-Nov-18 13:15:00; Code Description: Other - Process	Date: 14-Nov-18 13:20:00; Code Description: Other - Process
Date: 14-Nov-18 07:36:00; Code Description: Other - Process	Date: 14-Nov-18 07:39:00; Code Description: Other - Process	Date: 14-Nov-18 13:15:00; Code Description: Other - Process	Date: 14-Nov-18 13:20:00; Code Description: Other - Process

LM8 Closest Stop	LM8 Closest Start	LM9 Closest Stop	LM9 Closest Start
Date: 01-May-18 23:43:00; Code Description: Conveying-Pneumatic	Date: 01-May-18 23:59:59; Code Description: Conveying-Pneumatic	Date: 01-May-18 23:43:00; Code Description: Conveying-Pneumatic	Date: 01-May-18 23:59:59; Code Description: Conveying-Pneumatic
Date: 25-Jul-18 00:00:00; Code Description: Power Savings - on peak hours only	Date: 25-Jul-18 01:48:00; Code Description: Power Savings - on peak hours only	Date: 25-Jul-18 00:00:00; Code Description: Power Savings - on peak hours only	Date: 25-Jul-18 01:56:00; Code Description: Power Savings - on peak hours only
Date: 03-Aug-18 07:27:00; Code Description: Kiln Down -no heat	Date: 01-Aug-18 07:05:00; Code Description: Kiln Down -no heat	Date: 03-Aug-18 07:27:00; Code Description: Kiln Down -no heat	Date: 01-Aug-18 07:27:00; Code Description: Other - Process
Date: 03-Aug-18 07:27:00; Code Description: Kiln Down -no heat	Date: 01-Aug-18 07:05:00; Code Description: Kiln Down -no heat	Date: 03-Aug-18 07:27:00; Code Description: Kiln Down -no heat	Date: 01-Aug-18 07:27:00; Code Description: Other - Process
Date: 21-Sep-18 17:29:00; Code Description: Kiln Down -no heat	Date: 21-Sep-18 16:10:00; Code Description: Other - Process	Date: 21-Sep-18 17:29:00; Code Description: Kiln Down -no heat	Date: 21-Sep-18 16:02:00; Code Description: Other - Process

LM8 Closest Stop	LM8 Closest Start	LM9 Closest Stop	LM9 Closest Start
Date: 14-Apr-18 02:37:00; Code Description: Mill-Mechanical	Date: 14-Apr-18 00:28:00; Code Description: Conveying-Pneumatic	Date: 14-Apr-18 13:37:00; Code Description: Conveying-Pneumatic	Date: 14-Apr-18 15:48:00; Code Description: Conveying-Pneumatic
Date: 16-Apr-18 10:20:00; Code Description: Feed System-Other	Date: 16-Apr-18 10:37:00; Code Description: Feed System-Other	Date: 16-Apr-18 10:41:00; Code Description: Feed System-Other	Date: 16-Apr-18 10:46:00; Code Description: Feed System-Other
Date: 14-Apr-18 02:37:00; Code Description: Mill-Mechanical	Date: 14-Apr-18 00:28:00; Code Description: Conveying-Pneumatic	Date: 14-Apr-18 17:27:00; Code Description: Conveying-Pneumatic	Date: 14-Apr-18 16:17:00; Code Description: Other - Process
Date: 05-Nov-18 04:22:00; Code Description: Mill-Mechanical	Date: 05-Nov-18 04:42:00; Code Description: Mill-Mechanical	Date: 05-Nov-18 08:14:00; Code Description: Planned outage/Maintenance outage	Date: 05-Nov-18 09:25:00; Code Description: Planned outage/Maintenance outage
Date: 14-Apr-18 02:37:00; Code Description: Mill-Mechanical	Date: 14-Apr-18 00:28:00; Code Description: Conveying-Pneumatic	Date: 14-Apr-18 16:16:00; Code Description: Other - Process	Date: 14-Apr-18 16:17:00; Code Description: Other - Process

LM8 Closest Stop	LM8 Closest Start	LM9 Closest Stop	LM9 Closest Start
Date: 01-Apr-18 18:40:00; Code Description: Other - Process	Date: 01-Apr-18 18:43:00; Code Description: Other - Process	Date: 01-Apr-18 03:13:00; Code Description: Other - Process	Date: 01-Apr-18 03:28:00; Code Description: Other - Process
Date: 03-Apr-18 09:35:00; Code Description: Other - Process	Date: 03-Apr-18 09:38:00; Code Description: Other - Process	Date: 02-Apr-18 08:08:00; Code Description: Kiln Down -no heat	Date: 02-Apr-18 10:07:00; Code Description: Kiln Down -no heat
Date: 31-Mar-18 02:15:00; Code Description: Other - Process	Date: 31-Mar-18 02:18:00; Code Description: Other - Process	Date: 30-Mar-18 04:52:00; Code Description: Other - Process	Date: 30-Mar-18 07:14:00; Code Description: Other - Process
Date: 31-Mar-18 02:15:00; Code Description: Other - Process	Date: 31-Mar-18 02:18:00; Code Description: Other - Process	Date: 30-Mar-18 04:52:00; Code Description: Other - Process	Date: 30-Mar-18 07:14:00; Code Description: Other - Process
Date: 31-Mar-18 02:15:00; Code Description: Other - Process	Date: 31-Mar-18 02:18:00; Code Description: Other - Process	Date: 30-Mar-18 04:52:00; Code Description: Other - Process	Date: 30-Mar-18 07:14:00; Code Description: Other - Process

LM8 Closest Stop	LM8 Closest Start	LM9 Closest Stop	LM9 Closest Start
Date: 19-Sep-18 21:28:00; Code Description: Other - Process	Date: 19-Sep-18 21:36:00; Code Description: Other - Process	Date: 19-Sep-18 14:01:00; Code Description: Planned outage/Maintenance outage	Date: 19-Sep-18 14:41:00; Code Description: Planned outage/Maintenance outage
Date: 19-Sep-18 21:28:00; Code Description: Other - Process	Date: 19-Sep-18 21:36:00; Code Description: Other - Process	Date: 19-Sep-18 14:01:00; Code Description: Planned outage/Maintenance outage	Date: 19-Sep-18 14:41:00; Code Description: Planned outage/Maintenance outage
Date: 19-Sep-18 21:28:00; Code Description: Other - Process	Date: 19-Sep-18 21:36:00; Code Description: Other - Process	Date: 19-Sep-18 14:01:00; Code Description: Planned outage/Maintenance outage	Date: 19-Sep-18 14:41:00; Code Description: Planned outage/Maintenance outage
Date: 19-Sep-18 21:28:00; Code Description: Other - Process	Date: 19-Sep-18 21:36:00; Code Description: Other - Process	Date: 19-Sep-18 14:01:00; Code Description: Planned outage/Maintenance outage	Date: 19-Sep-18 14:41:00; Code Description: Planned outage/Maintenance outage
Date: 19-Jul-18 00:00:00; Code Description: Kiln Down -no heat	Date: 19-Jul-18 03:22:00; Code Description: Kiln Down -no heat	Date: 19-Jul-18 03:22:00; Code Description: Other - Mechanical	Date: 19-Jul-18 03:22:00; Code Description: Kiln Down -no heat

2019

Kiln 4 Stack

Compound	2019 CEMS Emission Rate [kg/hr]	2019 CEMS Emission Rate [g/s]	Comment	Dec 2019 ESDM Report - TOC (2018 CEMS)	Date of hourly event
NOx	348	97	This value is less than the NOx emission rate report in the ESDM.	102	
SO2	1123	312	This value is greater than what is reported in the ESDM but the CEMS presented an error code and the next highest emission rate is less than the maximum presented in the		Nov 10 @ 2pm
SO2	880	245	ESDM Report - App G - TOC		May 7th @ 9 am

Kiln 4 Bypass Stack

Compound	2019 CEMS Emission Rate [kg/hr]	2019 CEMS Emission Rate [g/s]	Comment	Dec 2019 ESDM Report - TOC (2018 CEMS)	Date of hourly event
NOx	24.1	6.7	This value is less than the NOx emission rate report in the ESDM.	7.4	
SO2	45.9	12.8	This value is greater than what is reported in the ESDM. No error code with the value.	11.6	4/6/2019 12:00
SO2	28	7.9	Next highest	11.6	4/6/2019 14:00

Made By: TMH Checked By: CAM

Kiln 4 Stack

Compound	2020 EMS Emission Rate [kg/hr]	2020 CEMS Emission Rate [g/s]	Comment	ESDM Report v.1.2 - TOC (2019 CEMS)	Date of hourly event
NOx	647.2		This value is greater than what is reported in the ESDM. No error code with the value.	96.7	06/23/2020 05:00
SO2	700	194	This value is less than what is reported in the ESDM previously.	312	12/01/2020 15:00

Kiln 4 Bypass Stack

Compound	2020 CEMS Emission Rate [kg/hr]	2020 CEMS Emission Rate [g/s]	Comment	ESDM Report v.1.2 - TOC (2019 CEMS)	Date of hourly event
NOx	19.5	5.4	This value is less than what is reported in the ESDM. No error code with the value.	6.7	12/31/2020 09:00
SO2	29.6	8.2	This value is greater than what is reported in the ESDM. No error code with the value.	7.9	12/28/2020 20:00

Kiln 4 Stack

	Compound	2021 CEMS Emission Rate [kg/hr]	2021 CEMS Emission Rate [g/s]	ESDM Report v.1.3 - TOC (2020 CEMS)	Date of hourly event
	CO	507.1	140.9	_	2021-06-22 23:00
Г	NOx	725.8	201.6	179.8	2021-01-09 10:00
Г	SO2	591.8	164.4	194	2021-12-25 18:00

Kiln 4 Bypass Stack

Compound	2021 CEMS Emission Rate [kg/hr]	2021 CEMS Emission Rate [g/s]	ESDM Report v.1.3 - TOC (2020 CEMS)	Date of hourly event	
CO	2.3	0.6	_	2021-06-16 11:00	
NOx	24.0	6.7	5.4	2021-02-13 9:00	
SO2	49.3	13.7	8.2	2021-02-13 6:00	

November 2022 2148080301

APPENDIX H

ALCF Emission Increase Methodology

TECHNICAL MEMORANDUM

DATE November 24, 2022 **Project No.** 2148080301

TO Nick Papanicolaou

Lehigh Hanson Materials Limited

FROM Golder Associates Ltd. EMAIL jeffrey.zywicki@wsp.com

METHODOLOGY FOR ASSESSING THE USE OF ALCFS AT LEHIGH PICTON CEMENT PLANT

Lehigh Hanson Materials Ltd. (Lehigh) currently operates under Environmental Compliance Approval (ECA) Number 0073-BHGQHC issued October 31, 2019, for its facility located at 1370 Highway 49, Picton, Ontario (the Facility). This technical memorandum has been prepared to provide the methods for estimating emissions from the proposed use of alternative low carbon fuels (ACLFs) at the Facility and to satisfy s.10 of Ontario Regulation (O. Reg.) 419/05 in support of the ECA Application for the use of ALCFs.

Lehigh is seeking an ECA for the following change:

- To allow for a Non-Demonstration (Permanent) Project to use ALCFs satisfying O. Reg. 79/15 (as amended by O. Reg 54/21 and 824/21). Lehigh is requesting approval to use the following ALCFs:
 - Construction & Demolition (C&D) Materials; including but not limited to primarily wood material with minor amounts of non-recyclable paper and plastic.
 - Industrial, Commercial, and Institutional (IC&I) Materials; including but not limited to primarily non-recyclable paper, plastic and textiles but including wood material, and tire fibre and fluff.
 - The combustible fraction of non-recyclable household waste (commonly referred to as Refuse Derived Fuel [RDF]).
 - Discarded treated seed.
- The above noted ALCFs would meet the following criteria:
 - Be used as mixtures of non-recyclable and non-odorous materials
 - Not be derived from or composed of any material set out in Schedule 1 of O. Reg. 79/15
 - Wholly derived from or composed of materials that are biomass, municipal waste, or a combination of both; and
 - Have a high heat value of at least 10 megajoules per kilogram.

Purpose and Scope

This technical memorandum has been prepared to support the Emission Summary and Dispersion Modelling (ESDM) Report and the ECA Application for the use of ALCFs at the Facility.

Section 10 of O. Reg. 419/05 states that an acceptable operating condition is a scenario in which operating conditions for the Facility would result, for the relevant contaminant, in the highest concentration of the contaminant possible at the point of impingement (POI).

The maximum emission scenario for the dispersion modelling analysis must include all sources at the Facility operating simultaneously at their respective maximum rates.

The following sections describe the conservative emission estimates considered to represent the use of the ACLFs.

Identification of ALCF Emissions Sources

The emissions from the use of ALCFs have the potential to be emitted from the Kiln 4 main stack and the Kiln 4 Bypass stack. These stacks emit process combustion air from the kiln.

All material handling activities related to ALCFs will occur in an enclosed building with no expectation of emissions.

Identification of Significant ALCF Contaminants

Table H1, appended to this technical memorandum, presents the individual and groups of contaminants that could be emitted from the Kiln 4 main stack and Kiln 4 Bypass stack as a result of the combustion of ALCFs. The table provides the following contaminant groups:

- Combustion air and water
- Particulates
- Nitrogen oxides
- Sulphur dioxide
- Carbon monoxide
- Trace Incomplete Combustion Products: volatile organic carbon (VOCs) & polycyclic aromatic hydrocarbons (PAHs)
- Trace inorganic metals & chlorinated compounds
- Ammonia
- Dioxins and furans

November 24, 2022

The table also presents the following:

- The controls used at the Facility to mitigate the emissions of the contaminant group.
- The anticipated changes to the emissions from using ALCFs versus conventional fuels.
- The rationale for excluding the contaminant group from the dispersion modelling analysis in the ESDM Report.
- The monitoring (CEMS, BMPPs) used at the Facility to monitor the emissions form the contaminant group.

Based on the expertise of Golder and Lehigh's internal experience with ALCF projects in western Canada, the only emissions anticipated to increase are related to trace inorganics, metals, and chlorinated compounds. This is further described below:

- Combustion air: carbon dioxide and water emissions are not anticipated to change from the use ALCFs. The non-biogenic carbon dioxide emissions will decrease with the use of ALCFs.
- Particulate emissions are not anticipated to be affected from the use of ALCFs in comparison to coal and petcoke. Fuel combustion is an insignificant contribution to total dust in comparison to the raw meal/clinker dust generated during the process.
- Nitrogen oxides (NOx) emissions are not anticipated to change with ALCFs as these emissions are dominated from thermal NOx (i.e., formed within the high temperature of kiln) and not the fuel itself. Additionally, NOx emissions are controlled with the use of selective non-catalytic reduction (SNCR) by injection of ammonia.
- Sulphur dioxide (SO₂) emissions are not anticipated to change from the use of ALCFs as these emissions are largely a result of sulphur compounds within the limestone rock (i.e., formed within the high temperature of kiln) and not the fuel itself.
- Carbon monoxide, trace PAHs and VOCs may be emitted from incomplete combustion. Lehigh has committed to only using ALCFs during normal operations when the kiln operates at optimal combustion temperatures greater than 1,450 °C. During these normal operations, the kiln is operating with good combustion, and the combustion of ALCFs should not be a significant source of these contaminants. Lehigh will have an interlock to shut off the feed of ALCFs during any sort of transitional operating condition (TOC), and as a result carbon monoxide, PAHs and VOCs have been excluded from the analysis of ALCF combustion. Please refer to Figure 1 below presenting a graphical representation of the interlock/control software. This specific graphic presents the ramp-up of the kiln and when ALCFs will be combusted. Lehigh will have alarms and interlocks in place to shutoff the ALCF feed if the kiln is not operating at its desired combustion.
- Trace inorganics, metals, and chlorinated compounds have the potential for increased emissions from the use of ALCFs in comparison to petcoke and coal; therefore, these emission rate increases have been assessed in this appendix.
- Ammonia was not considered to have a significant emission rate change from the use of ALCFs as the source of ammonia from the Kiln 4 stack is a result of natural occurring ammonia in the limestone rock, and in some instances, from ammonia slip from the SNCR.

Lehigh Hanson Materials Limited

Dioxins and furans can be emitted from the kiln; however, these emissions occur at temperatures lower than what the kiln operates at during normal conditions. As mentioned above, ALCFs will not be combusted until the kiln is in the normal operating range when the kiln should not be a significant source of dioxins and furans.

Process Controls / Interlocks Transitional Operating Condition (startup) **Normal Operations** Recirculating Coal System Increase Coal Start Coal Temperatures System Alternative Fuels Increasing Natural Gas Interlocks increasing Satisfied Start Pre-System Available To Start Stage 4 Stage 4 Stage 4 Stage 4 Temp 700 Temp 875 Temp 35 Temp 425 Deg C Deg C Deg C Deg C **Lehigh Hanson** Alternative Low Carbon Fuel Use at the Lehigh Picton Cement Plant - Public Meeting #2 | Lehigh Hanson | 08.25.2022

Figure 1: Process Controls/Interlocks

Methodology - Mass Balance

To estimate the emissions that have the potential to be emitted at higher rates from the use of ALCFs in comparison to petcoke and coal, Lehigh carried out a lab analysis on the low sulphur coal (LSC), petcoke, and the four ALCFs under consideration for use in the process kiln.

Of the 39 contaminants that were analyzed, 16 contaminants were found to have higher concentrations in LSC or petcoke and were excluded from further assessment (i.e., the existing conventional fuel scenario would represent the worst-case scenario).

The 23 remaining contaminants that were found to have higher concentrations in one of the four ALCFs were assessed and an estimated increase in emission rate was applied to the Kiln 4 Bypass Stack. This is due to the contaminants could be emitted as solid (fraction of the particulate).

November 24, 2022

Several metals analyzed are considered non-volatile or semi-volatile and will not be emitted from the kiln (Kiln 4) because of fuel combustion. This is due to the expectation that these contaminants will condense and re-circulate in the pre-heater and kiln and eventually be contained in the clinker matrix as per section 1.3.4.7 of the EU BAT (2013)¹ and in consultation with Lehigh process engineers. The six contaminants that would not be bound in the clinker matrix had an estimated increase in emission rate applied to them from Kiln 4. This screening process can be seen in Table H2 appended to this technical memorandum.

The detailed process of how these emissions were assessed is described in Steps 1 to 7 below:

Step 1: Carry out an analysis of the maximum contaminant concentrations analyzed from the ALCFs, coal and petcoke

Table H2 provides a tabular analysis of the contaminants analyzed from petcoke, LSC and the four ALCFs under consideration. The references to the lab analysis for this data are provided in the column headers.

- 39 contaminants (on an elemental basis) were analyzed from these materials
- 16 contaminants were found to have higher concentrations in coal or petcoke than any of the four ALCFs, and were excluded from further analysis
- 23 contaminants were found to have higher concentrations in one of the four ALCFs and increased emission rates were estimated from the Kiln 4 Bypass Stack:
 - Chlorine was assessed as hydrogen chloride and assumed to have a maximum concentration in the ALCFs of 1.5% by weight to be consistent with the fuel handling and testing manual limits
 - Calcium was assessed as calcium oxide

The screening result of Step 1 is summarized below:

Contaminant Category	Number of Contaminants
Contaminants from ALCFs assessed	39
Contaminants from ALCFs with higher concentrations in LSC or petcoke	16
Contaminants from ALCFs with higher concentrations in one of the four ALCFs and passed on to Step 2a and 2b	23

¹ Frauke Schorcht et al., Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide, 2013

5

Step 2a: Estimate a mass balance increase in emission rates from Kiln 4 Bypass

Emission rates for all 23 contaminants that have higher concentrations in an ALCF than coal or petcoke have been estimated from the Kiln 4 bypass stack. Emission rate estimation methodologies for bismuth, iron, magnesium, silicon, sodium, tungsten, and zinc are provided in Steps 5, 6 and 7 below. All other contaminants were estimated using the following method:

E-rate_{ALCF} = E-rate_{existing}* %Conc_{increase}

Where:

E-rate_{ALCF} = new emission rate considering ALCFs

E-rate_{existing} = emission rate in 2021 ESDM Report

%Conc_{increase} = calculated percentage increase of contaminant in ALCF compared to LSC or petcoke

%Concincrease is calculated in Step 3.

Step 2b: Estimate a mass balance increase in emission rates from Kiln 4

For the contaminants that have higher concentrations in an ALCF than coal or petcoke, only volatile contaminants will be considered from Kiln 4.

Several metals analyzed are considered non-volatile or semi-volatile and will not be emitted from the kiln as a result of fuel combustion. This is due to the expectation that these contaminants will condense and re-circulate in the pre-heater and kiln, and eventually be contained in the clinker matrix per section 1.3.4.7 of the EU BAT (2013)² and in consultation with Lehigh process engineers.

6 of the 23 contaminants that would not be bound in the clinker matrix had increased emission rates estimated from Kiln 4, and the contaminants that would screen out as non-volatile or semi-volatile in this step are indicated in Table H2.

The results of screening Step 2a and 2b are summarized below:

Contaminant Category	Number of Contaminants
Contaminants from ALCFs assessed	39
Contaminants from ALCFs with higher concentrations in LSC or petcoke	16
Contaminants from ALCFs with higher concentrations in one of the four ALCFs and passed on to Step 2a and 2b	23
Contaminants from ALCFs with increased emission rates applied to the Kiln 4 bypass stack	23
Contaminants from ALCFs with increased emission rates applied to Kiln 4	6

Notes: ** 17 contaminants were screened out from Kiln 4 due to them being non-volatile, refractory or semi-volatile.

² Frauke Schorcht et al., Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide,

Step 3: Determine the increase in mass of each contaminant entering the kiln process as a result of 200 tonnes per day (tpd) of ALCFs displacing the equivalent amount of coal/petcoke

The concentration increase as a percentage has been estimated using the following equation:

$$%Conc_{increase} = (A + B) / C$$

Where:

- A = maximum concentration of contaminant in an ALCF multiplied by the mass of ALCFs used per day (200 tpd)
- B = maximum concentration of contaminant in coal/petcoke multiplied by the mass of coal/petcoke NOT REPLACED by ALCFs (determined in Step 4b below)
- C = maximum concentration of contaminant in coal/petcoke multiplied by the average mass of coal/petcoke if ALCFs are not used

For contaminants with maximum concentrations below the detection limit, half the detection limit will be used for coal, petcoke, and all four ALCFs.

This step was based on the following inputs:

Parameter	Value	Unit
Average Coal/Petcoke Used ¹	300	tonnes/day
Maximum Total ALCFs Used	200	tonnes/day
Lowest High Heating Value (HHV) of ALCFs – Seed ²	14.55	MJ/kg
Maximum Total Energy Used from ALCFs	2,910,000	MJ/day
Highest HHV of Coal/Petcoke – Petcoke ²	33.16	MJ/kg
Mass of Coal/Petcoke Replaced by ALCFs	87.8	tonnes/day
Total Coal/Petcoke Required in Addition to ALCFs	212.2	tonnes/day

1-The average coal/petcoke used per day represents a conservative emissions scenario as it provides a higher proportion of ALCF to conventional fuel usage; and therefore, a larger increase in emission rates when compared to using the maximum coal/petcoke used per day 2-Using the lowest HHV of the four ALCFs and the highest HHV of the conventional fuels represent a conservative emissions scenario as they result in less conventional fuel replaced by 200 tonnes of ALCFs; and therefore, a larger amount of conventional fuels required (B in the formula above) (i.e., higher material kiln input to get the equivalent energy demand)

Please note the values (e.g., HHVs, Heat input demands) presented in this appendix may differ from other technical studies included with the ECA Amendment Application for the use of ALCFs (e.g., CO₂ Emission Intensity Report). This is due to the CO₂ Emission Intensity Report presented an estimated annual CO₂ emission reduction based on a range of estimated CO₂ emission intensities of a typical fuel mix, while the ESDM Report and this appendix assesses daily worst case air emissions from a maximum use of 200 tonnes per day of any of the ACLFs.

Step 4a: Determine the amount of coal/petcoke replaced by using 200 tpd of ALCFs.

The mass of coal/petcoke replaced by using 200 tpd of ALCFs has been estimated using the lowest Higher Heat Value (HHV) of the four ALCFs to convert mass into energy units. This conservatively replaces the least amount of coal/petcoke from 200 tpd of ALCFs. This amount of energy is then converted back into mass of coal/petcoke using the lower HHV of coal/petcoke. The lower HHV is used in this case because the maximum total mass of coal/petcoke used if ALCFs are not used (C from Step 3) is based on the fuel with the lower HHV. The result is the mass of coal/petcoke replaced by the ALCFs to fuel the kiln.

Energyalcf = HHValcf x 200 tpd

Where:

Energy_{ALCF} = Smallest amount of energy produced from 200 tpd of ALCFs HHV_{ALCF} = Lowest HHV of the four ALCFs

MASS_{Coal/Petcoke} = Energy_{ALCF} / HHV_{Coal/Petcoke}

Where:

MASS_{Coal/Petcoke} = Mass of coal/petcoke replaced by using 200 tpd of ALCFs Energy_{ALCF} = Smallest amount of energy produced from 200 tpd of ALCFs HHV_{Coal/Petcoke} = Lower HHV of coal/petcoke

Step 4b: Determine the amount of coal/petcoke not replaced by using 200 tpd of ALCFs.

The amount of coal/petcoke not replaced by using 200 tpd of ALCFs is estimated by subtracting the mass of coal/petcoke replaced by 200 tpd of ALCFs (MASS_{Coal/Petcoke} from Step 4a) from the total amount of coal/petcoke used if zero ALCFs are used.

Step 5: For iron, sodium, and zinc, determine the maximum emission rate from the Kiln 4 bypass stack.

Iron is considered non-volatile while sodium and zinc are considered semi-volatile and they will not be emitted from the kiln as a result of fuel combustion because these contaminants will condense and re-circulate in the preheater and kiln and eventually be contained in the clinker matrix per section 1.3.4.7 of the EU BAT (2013)².

Using Step 2a to apply an increase to the emission rates of these contaminants would result in the emission rates exceeding the emission rate of Suspended Particulate Matter (SPM) from the Kiln 4 Bypass Stack, which is not possible at the temperatures that the bypass stack exhausts (i.e., these metals would be emitted as particulate). Therefore, the maximum emission rates for iron, sodium, and zinc were conservatively assumed to equal the emission rate of SPM from the Kiln 4 Bypass Stack.

Step 6: For bismuth, magnesium and tungsten, determine the maximum emission rate from the Kiln 4 bypass stack.

Bismuth, magnesium, and tungsten were not included in the 2021 ESDM Report to apply an increase in emission rate. Therefore, the maximum emission rates for bismuth, magnesium, and tungsten were conservatively assumed to equal the emission rate of SPM from the Kiln 4 Bypass Stack as they would not exceed the SPM emission rate. Bismuth, magnesium and tungsten are expected to be non-volatile or semi-volatile and not emitted as a result of an increase in mass loading into the kiln.

Step 7: For silicon determine the maximum emission rate from Kiln 4 and the Kiln 4 bypass stack.

Silicon does not have an analysed concentration in coal or petcoke to apply an increase in emission rate to, nor is it considered a non-volatile or semi-volatile contaminant. Therefore, the maximum emission rates for silicon from Kiln 4 and the Kiln 4 bypass stack were conservatively assumed to equal the SPM emissions rates from the Kiln 4 and Kiln 4 bypass stack, respectively, as they would not exceed the SPM emission rates.

Summary

The following summarizes the screening process for assessing the contaminants that have the potential to be emitted from Kiln 4 and the Kiln 4 Bypass.

Contaminant Category	Number of Contaminants
Contaminants from ALCFs assessed	39
Contaminants from ALCFs with higher concentrations in LSC or petcoke	16
Contaminants from ALCFs with higher concentrations in one of the four ALCFs	23
Contaminants from ALCFs with increased emission rates applied to the Kiln 4 bypass stack	23
Contaminants from ALCFs with increased emission rates applied to Kiln 4	6

Table H1 provides a high level description of the types of emissions from Kiln 4 and Kiln 4 BP and whether changes are anticipated for those emissions.

Table H2 provides the screening table that includes the analysis of the LSC, petcoke and the four proposed ALCFs in ug/g or ppm.

Table H3 summarizes the method employed to increase the emission rates on the Kiln 4 and Kiln 4 Bypass stacks.

Table H4 provides a comparison of the Facility-wide emission rates before the proposed use of ALCFs and the estimated increases to emission rates as a result of using ALCFs. Please refer to Appendix B for the individual increases to emission rates from Kiln 4 and Kiln 4 Bypass. Appendix K provides a comparison of the maximum point-of-impingement (POI) concentrations of the 23 contaminants considered with and without the ACLF emission estimates.

November 24, 2022

Table H1: Anticipated Changes to Emissions with ACLFs

Contaminant Category	Emission Control	Change from Conventional Fuels	Rationale	Monitoring
Combustion Air & Water	■ None	Decrease in non- biogenic CO ₂	 ALCFs reduce non-biogenic CO2 emissions; majority of these compounds are air (Nitrogen and Oxygen) ALCF's may contain higher moisture leading to increases water vapor 	■ CEMS
Trace Inorganic Metals & Chlorinated Compounds	 Kiln 4 - ESP Incoming testing and fuel handling of ACLF materials 	May Increase	 Based on material lab analysis, certain inorganic materials & metals may increase. These increases in potential emission estimates have been assessed. ALCFs may have higher chlorine content. Emission increases have been estimated and assessed. 	Incoming Fuel HandlingSource Testing
Particulates (Dust)	 Material Handling in building Kiln 4 – ESP & Kiln 4 Bypass dust collector 	Negligible	 Dust from truck traffic will be a negligible increase Material Handling will be carried out inside a building and covered conveyors Dust from the fuel combustion is insignificant 	CEMS (opacity)Fugitive Dust BMPP
Oxides of Nitrogen (NOx)	 CEMS & SNCR (ammonia injection) 	Negligible	 NOx is mostly generated from the temperature of the combustion, not the fuel type. SNCR system operation to control NOx emissions 	■ CEMS
Sulphur Dioxide (SO ₂)	 Kiln 4 – Lime injection (currently being trialed) 	Negligible	■ SO₂ is mostly a result of the raw materials (limestone). The fuels will be screened to be low in sulphur.	■ CEMS
Carbon Monoxide	 Good combustion in the CEMS 	Negligible	■ No material change to combustion efficiency is anticipated	■ CEMS (monitor combustion)
Trace Incomplete Combustion Products: VOC & PAHs	Source TestingInterlock	Negligible	It is not expected that VOC & PAH emissions will change due to the high temperature and residence time of the kiln.	Source Testing
Dioxins & Furans	Source TestingInterlock	Negligible	■ It is not expected that D&F emissions will change due to the high temperature and residence time of the kiln.	■ Source Testing
Ammonia	 Ammonia used to control NOx 	Negligible	■ Ammonia (naturally occurring in limestone & added to control NOx)	■ Source Testing

Lehigh Hanson Materials Limited

Table H2: Analyses of Contaminants

Mercury, Hg <0.05	Table H2. Analyses of Contaminants											
Data Sheed Name Page Data Sheed Name Page Data Sheed Name Page Data Sheed Name Page Page Data Sheed Name Page P	Fuel	Limestone	Coal	Petcoke	C&D	ICI	MSW RDF	Seed				
ALCF Source Date Sheet Name Contaminant Additive TM MA220 Additive TM MA220 Contaminant Contaminant Additive TM MA220 Contaminant Cont	Concentration Unit	[µg/g]	[ha\a]	[ha\a]		[µg/g]					Fuel with	Emission Data Ingress
Data Sheet Name	ALCF Source							Ray Testing	from any fuel	from Coal/Petcoke		
Aburnium, Al. 38000 40,000 150 14/22 16,000 1,108 1,038 40,000 40,000 Coal No. Scenened out in Step 1		CA19199-	McCreath	n Analysis	Metals-	CA19183-		& Seed metals				
Beryllium, Re				_			1 108	-	40 000	40 000	Coal	No Screened out in Step 1
Boron, B	·		·			,	†			•		
Fluorine, F.	•											
Lithium, Li 29 50 <-2 17 50 50 Coal No. Screened out in Step 1 Molyodenum, Mo	·											
Molybdorum, Mo								_				
Nickel, Ni								2 14				
Potassium K 16000 6,700 14	•											
Selemium, Se	*											
SiOZ 16 29.3 19.6 0.31 19.6 19.6 Coal No. Screened out in Step 1	· · · · · · · · · · · · · · · · · · ·		·			·		·	·			
Strontium, Sr 660												
Sulfur, S												
Thaillium, TI										+		
Uranium, U 1.3 1.7 0.04 — 0.81 — <0.10 1.7 1.7 Coal No. Screened out in Step 1 Vanadium, V 33 51 1,100 — 26 — 0.59 1,100 1,100 Petcoke No. Screened out in Step 1 Yittium, Y 10.4 12 0.15 — 4.88 — <0.50								-	,			
Vanadium, V 33 51 1,100 — 26 — 0.59 1,100 1,100 Petcoke No. Screened out in Step 1 Vitrium, Y 10.4 12 0.15 — 4.88 — <0.50 12 12 Coal No. Screened out in Step 1 Antimony, Sb <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.8 <0.9 <0.9 <0.9 <0.9	·											•
Yttrium, Y 10.4 12 0.15 — 4.88 — < 0.50 12 12 Coal No. Screened out in Step 1 Antimony, Sb <0.8 <0.8 <0.8 <0.8 4.56 54 10.82 0.13 54 0.4 ICI Yes Arsenic, As 4.2 4.30 <0.5 9.38 4.6 0.69 0.33 9.38 4.30 C&D Yes Barium, Ba 86 0.93 180 — 330 — 8.21 330 180 ICI Yes Bismuth, Bi — — — — — — — — — 9.60 <0.50 <0.50 <0.50 Seed Yes Cadiium, Cd 0.04 0.04 <0.02 0.24 2 0.86 <0.10 2 0.04 ICI Yes Calcium, Ca 370000 1,500 230 10,307 68,000 20,542 12,770 68,000				1,100								
Antimony, Sb					_				·			
Arsenic, As					4.56		+					
Barium, Ba 86 0.93 180 — 330 — 8.21 330 180 ICI Yes Bismuth, Bi — — — — — — — 0.50 <0.50												
Bismuth, Bi												
Cadmium, Cd 0.04 0.04 <0.02 0.24 2 0.86 <0.10 2 0.04 ICI Yes Calcium, Ca 370000 1,500 230 10,307 68,000 20,542 12,770 68,000 1,500 ICI Yes Chlorine, Cl¹ — 1,202 — 1,728 — 3,761 5 15,000 1,202 MSW RDF Yes Chromium, Cr 63 40 2.3 22.5 90 6.9 34.64 90 40 ICI Yes Cobalt, Co 6 6.6 2 — 570 — 0.6 570.0 6.6 ICI Yes Copper, Cu 4.5 17 0.62 1,136.7 990 48.1 10.3 1,136.7 17 C&D Yes Iron, Fe 21000 8,200 440 558 68,000 922 1,403 68,000 8,200 ICI Yes Magnesium, Mg					_		_					
Calcium, Ca 370000 1,500 230 10,307 68,000 20,542 12,770 68,000 1,500 ICI Yes Chlorine, Cl¹ — 1,202 — 1,728 — 3,761 5 15,000 1,202 MSW RDF Yes Chromium, Cr 63 40 2.3 22.5 90 6.9 34,64 90 40 ICI Yes Cobalt, Co 6 6.6 2 — 570 — 0.6 570.0 6.6 ICI Yes Copper, Cu 4.5 17 0.62 1,136.7 990 48.1 10.3 1,136.7 17 C&D Yes Iron, Fe 21000 8,200 440 558 68,000 922 1,403 68,000 8,200 ICI Yes Lead, Pb 8 12 0.44 15.11 91 10.07 1.7 91 12 ICI Yes Magnesium, Mg 1	,	0.04	0.04	<0.02	0.24	2	0.86					
Chlorine, Cl¹ — 1,202 — 1,728 — 3,761 5 15,000 1,202 MSW RDF Yes Chromium, Cr 63 40 2.3 22.5 90 6.9 34.64 90 40 ICI Yes Cobalt, Co 6 6.6 2 — 570 — 0.6 570.0 6.6 ICI Yes Copper, Cu 4.5 17 0.62 1,136.7 990 48.1 10.3 1,136.7 17 C&D Yes Iron, Fe 21000 8,200 440 558 68,000 922 1,403 68,000 8,200 ICI Yes Lead, Pb 8 12 0.44 15.11 91 10.07 1.7 91 12 ICI Yes Magnesium, Mg 13000 1,800 55 431.6 14,000 1,663.3 2,685 14,000 1,800 ICI Yes Mercury, Hg <0.0												
Chromium, Cr 63 40 2.3 22.5 90 6.9 34.64 90 40 ICI Yes Cobalt, Co 6 6.6 2 — 570 — 0.6 570.0 6.6 ICI Yes Copper, Cu 4.5 17 0.62 1,136.7 990 48.1 10.3 1,136.7 17 C&D Yes Iron, Fe 21000 8,200 440 558 68,000 922 1,403 68,000 8,200 ICI Yes Lead, Pb 8 12 0.44 15.11 91 10.07 1.7 91 12 ICI Yes Magnesium, Mg 13000 1,800 55 431.6 14,000 1,063.3 2,685 14,000 1,800 ICI Yes Marganese, Mn 300 32 6.4 36.9 460 46.7 26.11 460 32 ICI Yes Mercury, Hg <0.05 <td></td> <td></td> <td>•</td> <td>İ</td> <td>·</td> <td>•</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>·</td> <td>·</td> <td></td> <td></td>			•	İ	·	•	· · · · · · · · · · · · · · · · · · ·		·	·		
Cobalt, Co 6 6.6 2 — 570 — 0.6 570.0 6.6 ICI Yes Copper, Cu 4.5 17 0.62 1,136.7 990 48.1 10.3 1,136.7 17 C&D Yes Iron, Fe 21000 8,200 440 558 68,000 922 1,403 68,000 8,200 ICI Yes Lead, Pb 8 12 0.44 15.11 91 10.07 1.7 91 12 ICI Yes Magnesium, Mg 13000 1,800 55 431.6 14,000 1,063.3 2,685 14,000 1,800 ICI Yes Manganese, Mn 300 32 6.4 36.9 460 46.7 26.11 460 32 ICI Yes Mercury, Hg <0.05	•	63		2.3		90	•					
Copper, Cu 4.5 17 0.62 1,136.7 990 48.1 10.3 1,136.7 17 C&D Yes Iron, Fe 21000 8,200 440 558 68,000 922 1,403 68,000 8,200 ICI Yes Lead, Pb 8 12 0.44 15.11 91 10.07 1.7 91 12 ICI Yes Magnesium, Mg 13000 1,800 55 431.6 14,000 1,063.3 2,685 14,000 1,800 ICI Yes Manganese, Mn 300 32 6.4 36.9 460 46.7 26.11 460 32 ICI Yes Mercury, Hg <0.05	*				_		_					
Iron, Fe 21000 8,200 440 558 68,000 922 1,403 68,000 8,200 ICI Yes Lead, Pb 8 12 0.44 15.11 91 10.07 1.7 91 12 ICI Yes Magnesium, Mg 13000 1,800 55 431.6 14,000 1,063.3 2,685 14,000 1,800 ICI Yes Manganese, Mn 300 32 6.4 36.9 460 46.7 26.11 460 32 ICI Yes Mercury, Hg <0.05	•				1,136.7		48.1					
Lead, Pb 8 12 0.44 15.11 91 10.07 1.7 91 12 ICI Yes Magnesium, Mg 13000 1,800 55 431.6 14,000 1,063.3 2,685 14,000 1,800 ICI Yes Manganese, Mn 300 32 6.4 36.9 460 46.7 26.11 460 32 ICI Yes Mercury, Hg <0.05			8,200		·				·			
Magnesium, Mg 13000 1,800 55 431.6 14,000 1,063.3 2,685 14,000 1,800 ICI Yes Manganese, Mn 300 32 6.4 36.9 460 46.7 26.11 460 32 ICI Yes Mercury, Hg <0.05						·		•	•	•		
Manganese, Mn 300 32 6.4 36.9 460 46.7 26.11 460 32 ICI Yes Mercury, Hg <0.05												
Mercury, Hg <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.14 0.31 0.31 0.025 Seed Yes Phosphorous, P 500 140 7.7 — 700 — 3,785 3,785 140 Seed Yes Silicon, Si — — — — — 5,836 5,836 N/A Seed Yes Silver, Ag <0.5	Manganese, Mn								·			
Phosphorous, P 500 140 7.7 — 700 — 3,785 3,785 140 Seed Yes Silicon, Si — — — — — — 5,836 N/A Seed Yes Silver, Ag <0.5	<u> </u>											
Silicon, Si — — — — — — 5,836 5,836 N/A Seed Yes Silver, Ag <0.5												i
Silver, Ag <0.5 <1 <1 — 0.6 — <0.10 0.6 0.5 ICI Yes	Silicon, Si				_		_	·	•			
	Silver, Ag	<0.5	<1	<1	_	0.6		· · · · · · · · · · · · · · · · · · ·	•			
	Sodium, Na			73	_		_					

Mayambar	24	2022
November	24.	2022

	Fuel	Limestone	Coal	Petcoke	C&D	ICI	MSW RDF	Seed				
Cor	ncentration Unit	[µg/g]	[µg/g]	[µg/g]	As Received [ppm]	[ha\a]	As Received [ppm]	As Received [ppm]	Maximum Concentration	Maximum Concentration from Coal/Petcoke [ppm]	Fuel with Maximum concentration	Emission Rate Increase Assessed?
	ALCF Source				Edm AB, Jasper		Edm AB, Jasper	Ray Testing	from any fuel [ppm]			
Da Contaminant	ata Sheet Name	Report CA19199- APR22rock	Additive TM MAR20 McCreath Analysis RobertSPierson_120221coal		Ultimate+ Metals- CDRCF	buffalo TM CA19183- MAY22	RDF MSW analysis	Seed analysis & Seed metals analysis		[bb]		
Tin, Sn		<6	<6	<6	3.16	70	2.87	1.82	70	3	ICI	Yes
Titanium, Ti		1600	2,500	24	30.5	3,000	14.3	281	3,000	2,500	ICI	Yes
Tungsten, W		0.4	0.68	0.16	_	6	_	10.8	10.8	0.7	Seed	Yes
Zinc, Zn		22	19	4.5	77	53,000	110	30.77	53,000	19	ICI	Yes

Notes: 1 – The maximum concentration of chlorine in an ALCF from laboratory analysis was 3,761ppm. However, Lehigh will accept ALCFs with a chlorine content of up to 1.5% by weight (15,000ppm) so 15,000ppm was used to increase the emission rates from Kiln 4 and the Kiln 4 Bypass Stack.

Table H3 – Emission Rate Increase Summary

Contaminant	Maximum Concentration in Coal/Petcoke [%]	Maximum Concentration in ALCF [%]	Maximum Mass from Coal/Petcoke [tonne/day]	Maximum Mass from ALCF [tonne/day]	Maximum Mass from Coal/Petcoke NOT Replaced by ALCF [tonne/day]	% Increase	K4 Emission Increase Method	K4BP Emission Increase Method
Antimony, Sb	0.00004%	0.0054%	1.20E-04	1.08E-02	8.49E-05	9071%	No change: SV	% Increase
Arsenic, As	0.00043%	0.000938%	1.29E-03	1.88E-03	9.13E-04	216%	No change: NV	% Increase
Barium, Ba	0.018%	0.033%	5.40E-02	6.60E-02	3.82E-02	193%	No change: NV	% Increase
Bismuth, Bi		0.000025%	_	5.00E-05	_	_	No change: SV	SPM ER
Cadmium, Cd	0.000038%	0.0002%	1.14E-05	4.00E-04	8.07E-06	3580%	No change: SV	% Increase
Calcium, Ca	0.15%	6.8%	4.50E-01	1.36E+01	3.18E-01	3093%	No change: NV	% Increase as CaO
Chromium, Cr	0.004%	0.009%	1.20E-02	1.80E-02	8.49E-03	221%	No change: NV	% Increase
Copper, Cu	0.0017%	0.11367%	5.10E-03	2.27E-01	3.61E-03	4528%	No change: NV	% Increase
Iron, Fe	0.82%	6.8%	2.46E+00	1.36E+01	1.74E+00	624%	No change: NV	SPM ER
Lead, Pb	0.0012%	0.0091%	3.60E-03	1.82E-02	2.55E-03	576%	No change: SV	% Increase
Magnesium, Mg	0.18%	1.4%	5.40E-01	2.80E+00	3.82E-01	589%	No change: SV	SPM ER
Manganese, Mn	0.0032%	0.046%	9.60E-03	9.20E-02	6.79E-03	1029%	No change: NV	% Increase
Silver, Ag	0.00005%	0.00006%	1.50E-04	1.20E-04	1.06E-04	151%	No change: NV	% Increase
Sodium, Na	0.061%	2.2%	1.83E-01	4.40E+00	1.29E-01	2475%	No change: SV	SPM ER
Titanium, Ti	0.25%	0.3%	7.50E-01	6.00E-01	5.31E-01	151%	No change: NV	% Increase
Tungsten, W	0.00068%	0.00108%	2.04E-04	2.16E-03	1.44E-04	1130%	No change: NV	SPM ER
Zinc, Zn	0.0019%	5.3%	5.70E-03	1.06E+01	4.03E-03	186036%	No change: SV	SPM ER
Chlorine, Cl	0.1202%	1.5%	3.61E-01	3.00E+00	2.55E-01	903%	% Increase as HCI	% Increase as HCI
Cobalt, Co	0.00066%	0.057%	1.98E-03	1.14E-01	1.40E-03	5828%	% Increase	% Increase
Mercury, Hg	0.0000025%	0.000031%	7.50E-06	6.20E-05	5.31E-06	897%	% Increase	% Increase
Phosphorous, P	0.014%	0.3785%	4.20E-02	7.57E-01	2.97E-02	1873%	% Increase	% Increase
Tin, Sn	0.0003%	0.007%	9.00E-04	1.40E-02	6.37E-04	1626%	% Increase	% Increase
Silicon, Si	_	0.5836%	_	1.17E+00	_	<u> </u>	SPM ER	SPM ER

Notes:

Sample calculation of percent increase in concentration of Cobalt using 200 tpd of ALCFs to replace conventional fuels

 $%Conc_{increase} = (A + B) / C$

Where:

A = maximum concentration of contaminant in an ALCF multiplied by the mass of ALCFs used per day (200 tpd)

B = maximum concentration of contaminant in coal/petcoke multiplied by the mass of coal/petcoke NOT REPLACED by ALCFs (196.5 tpd from Step 3)

C = maximum concentration of contaminant in coal/petcoke x total mass of coal/petcoke if ALCFs are not used (300 tpd from Step 3)

%Conc_{increase} of Co = $((0.057\% \times 200) + (0.00066\% \times 212.2)) / (0.00066\% \times 300)$

 $Conc_{increase}$ of Co = (1.14E-01 + 1.40E-03) / 1.98E-03

%Concincrease of Co = 5828%

[&]quot;—" denotes not analyzed

[&]quot;SV" denotes semi-volatile. See Step 2b: these contaminants will condense and re-circulate in the pre-heater and kiln and eventually be contained in the clinker matrix as per section 1.3.4.7 of the EU BAT (2013)

[&]quot;NV" denotes non-volatile or refractory See Step 2b: These contaminants will condense and re-circulate in the pre-heater and kiln and eventually be contained in the clinker matrix as per section 1.3.4.7 of the EU BAT (2013)

Nick Papanicolaou Lehigh Hanson Materials Limited Project No. 2148080301

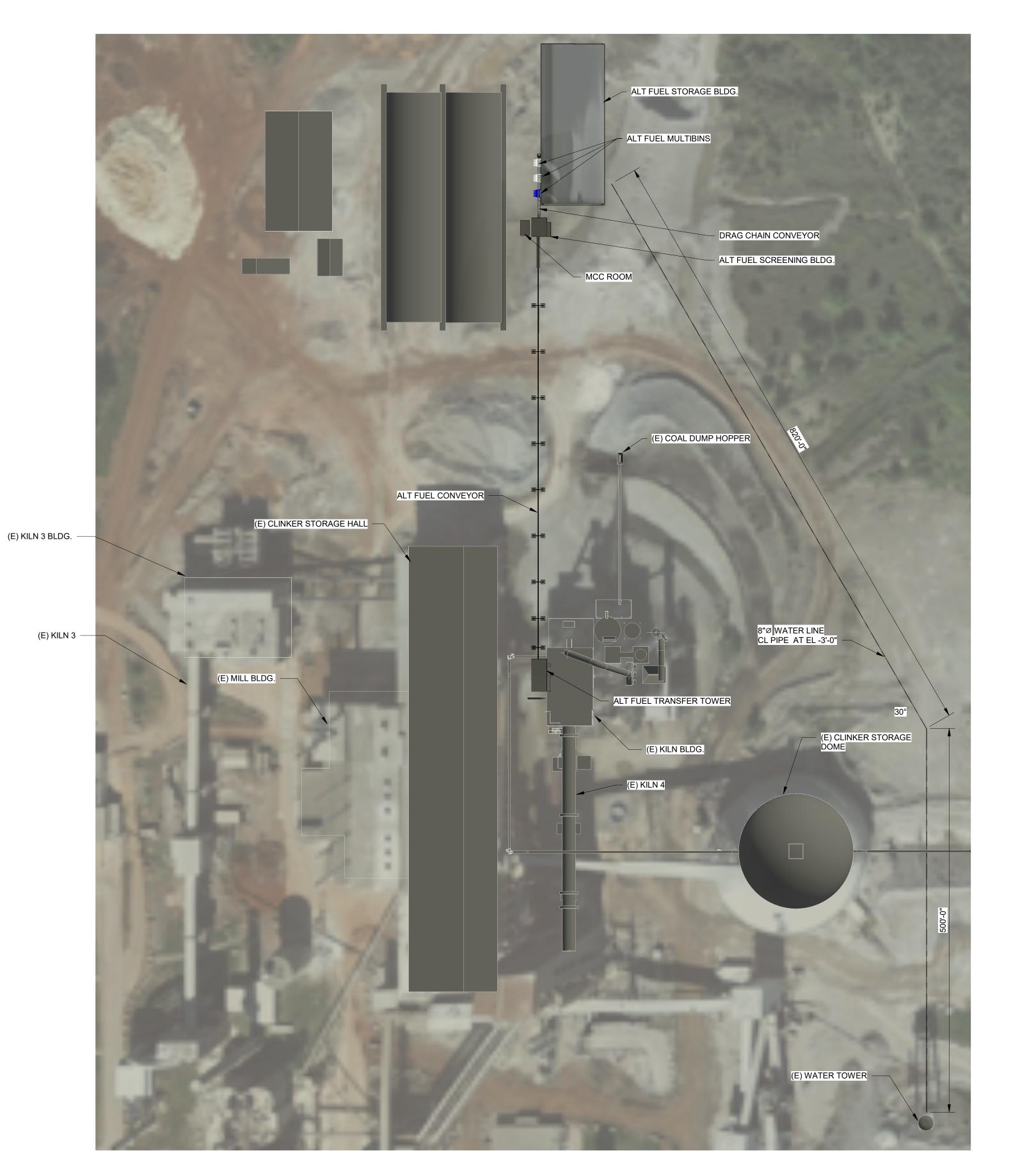
November 24, 2022

Table H4 – Comparison of Emissions with and without ALCFs

Contaminant	CAS No.	Total Facility Emission Rate -Without ALCFs- [g/s]	Total Facility Emission Rate -With ALCFs- [g/s]		
Antimony	7440-36-0	1.47E-04	1.21E-03		
Arsenic	7440-38-2	3.36E-04	3.84E-04		
Barium	7440-39-3	1.86E-02	2.82E-02		
Bismuth	7440-69-9	N/A ¹	4.56E-01		
Cadmium	7440-43-9	2.03E-04	6.49E-04		
Calcium Oxide	1305-78-8	5.44E+00	5.51E+00		
Chromium	7440-47-3	6.78E-04	1.28E-03		
Cobalt	7440-48-4	2.28E-04	1.33E-02		
Copper	7440-50-8	1.18E-01	1.21E-01		
Hydrogen chloride	7647-01-0	1.16E+00	1.04E+01		
Iron	7439-89-6	7.70E-01	8.41E-01		
Lead	7439-92-1	1.68E-02	1.90E-02		
Magnesium	7439-95-4	N/A ¹	4.56E-01		
Manganese	7439-96-5	1.98E-02	2.24E-02		
Mercury	7439-97-6	4.99E-03	4.48E-02		
Phosphorus	7723-14-0	6.90E-03	1.29E-01		
Silicon	7440-21-3	2.23E+00	6.67E+00		
Silver	7440-22-4	2.81E-05	3.52E-05		
Sodium	7440-23-5	1.36E+00	1.36E+00		
Tin	7440-31-5	7.94E-03	1.29E-01		
Titanium	7440-32-6	1.72E-02	2.16E-02		
Tungsten	7440-33-7	N/A ¹	4.56E-01		
Zinc Notes:	7440-66-6	1.26E-02	4.68E-01		

Notes:

N/A¹: Bismuth, Magnesium and Tungsten did not have emission rates prior to ALCF inclusion and have emission estimates that are very conservative at equal to the SPM emission rate.



1/1

November 2022 2148080301

APPENDIX I

Lehigh Supporting Documents

PRELIMINARY
NOT FOR CONSTRUCTION

13

16

ALTERNATIVE FUELS STUDY GENERAL ARANGEMENT **OVERALL SITE**

17
DRAWING FORMAT: ARCH D - 24"x36"

DRAWING NUMBER

2129-GA-100

1" LONG @ FULL SIZE PLOT PLAN

November 2022 2148080301

APPENDIX J

In-stack Limit Comparison

IN STACK EMISSION LIMITS

Source ID	Source Description	Contaminant	Source	Testing	Guideline A-7 Limits f	Below Guideline A-7 Limit?	
Source ID			In-stack Concentration	Unit*	In-Stack Emission Limit	Unit**	Yes/No
4-2	Kiln 4 Stack	SPM	24.6	mg/DRm ³	50	mg/Rm ³	Yes
		Cadmium	1.17	μg/DRm ³	7	μg/Rm ³	Yes
		Lead	13	μg/DRm ³	60	μg/Rm ³	Yes
		Mercury	4.22	μg/DRm ³	20	μg/Rm ³	Yes
		Dioxins and Furans	13.4	pg/DRm ³	80	pg/Rm ³	Yes
		Hydrochloric Acid	0.754	mg/DRm ³	27	mg/Rm ³	Yes
4-5	Kiln 4 By-Pass Stack	SPM	39.4	mg/DRm ³	50	mg/Rm ³	Yes
		Cadmium	0.908	μg/DRm ³	7	μg/Rm ³	Yes
		Lead	34.2	μg/DRm ³	60	μg/Rm ³	Yes
		Mercury	0.781	μg/DRm ³	20	μg/Rm ³	Yes
		Dioxins and Furans	6.97	pg/DRm ³	80	pg/Rm ³	Yes
		Hydrochloric Acid	1.69	mg/DRm ³	27	mg/Rm ³	Yes

^{*}DR- Dry reference; Reference - 25C & 101.3 kPa **Reference = 25C, 101.3kPa, 11% Oxygen & dry conditions

November 2022 2148080301

APPENDIX K

Emission Rate and Maximum POI Concentration Comparison with and without ALCFs

Table K1: Emission Rate and Maximum POI Concentration Comparison with and without ALCFs

Contaminant	CAS No.	Total Facility Emission Rate -Without ALCFs- [g/s]	Total Facility Emission Rate -With ALCFs- [g/s]	Maximum POI Concentration -Without ALCFs- [µg/m³]	Maximum POI Concentration -With ACLFs- [µg/m³]	Averaging Period	MECP POI Limit [μg/m³]	Schedule	Source	Percentage of MECP POI Limit -Without ALCFs- [%]	Percentage of MECP POI Limit -With ALCFs- [%]
Antimony 7	7440-36-0	1.47E-04	1.21E-03	8.33E-05	3.69E-03	24	25	Sch. 3	Standard	0.00033%	0.015%
	7440-38-2	3.36E-04	3.84E-04	2.35E-04	3.90E-04	24	0.3	Sch. 3	Guideline	0.08%	0.13%
Barium 7	7440-39-3	1.86E-02	2.82E-02	3.78E-02	6.87E-02	24	10	Sch. 3	Guideline	0.38%	0.69%
Bismuth 7	7440-69-9	N/A ¹	4.56E-01	N/A ¹	1.54E+00	24	2.5	Sch. 3	SL-JSL	_	61.7%
Cadmium 7	7440-43-9	2.03E-04	6.49E-04	1.04E-04	1.61E-03	24	0.025	Sch. 3	Standard	0.42%	6.4%
	1305-78-8	5.44E+00	5.51E+00	1.61E+00	1.68E+00	24	10	Sch. 3	Standard	16.1%	16.8%
Chromium 7	7440-47-3	6.78E-04	1.28E-03	1.75E-03	3.71E-03	24	0.5	Sch. 3	Standard	0.35%	0.74%
Cobalt 7	7440-48-4	2.28E-04	1.33E-02	1.22E-04	7.12E-03	24	0.1	Sch. 3	Guideline	0.12%	7.1%
Copper 7	7440-50-8	1.18E-01	1.21E-01	3.79E-02	4.87E-02	24	50	Sch. 3	Standard	0.08%	0.10%
Hydrogen chloride 7	7647-01-0	1.16E+00	1.04E+01	3.57E-01	3.22E+00	24	20	Sch. 3	Standard	1.8%	16.1%
Iron 7	7439-89-6	7.70E-01	8.41E-01	1.18E+00	1.40E+00	24	4	Sch. 3	Standard	30%	35%
Lead 7	7439-92-1	1.68E-02	1.90E-02	6.81E-03	1.44E-02	24	0.5	Sch. 3	Standard	1.4%	2.9%
Lead 7	7439-92-1	1.68E-02	1.90E-02	2.66E-03	5.60E-03	30-day	0.2	Sch. 3	Standard	1.3%	2.8%
Magnesium 7	7439-95-4	N/A ¹	4.56E-01	N/A ¹	1.54E+00	24	72	Sch. 3	SL-MD	_	2.1%
Manganese 7	7439-96-5	1.98E-02	2.24E-02	7.17E-03	1.60E-02	24	0.4	Sch. 3	Standard	1.8%	4.0%
Mercury 7	7439-97-6	4.99E-03	4.48E-02	1.63E-03	1.45E-02	24	2	Sch. 3	Standard	0.08%	0.73%
Phosphorus 7	7723-14-0	6.90E-03	1.29E-01	3.66E-03	6.84E-02	24	0.5	Sch. 3	SL-MD	0.73%	14%
Silicon 7	7440-21-3	2.23E+00	6.67E+00	1.18E+00	3.53E+00	24	27	Sch. 3	SL-PA	4.4%	13%
Silver 7	7440-22-4	2.81E-05	3.52E-05	5.19E-05	7.35E-05	24	1	Sch. 3	Standard	0.0052%	0.0074%
Sodium 7	7440-23-5	1.36E+00	1.36E+00	1.83E+00	1.83E+00	24	5.387	_	Previously Approved MAXGLC	34%	34%
	7440-31-5	7.94E-03	1.29E-01	3.71E-03	6.01E-02	24	10	Sch. 3	Standard	0.04%	0.60%
Titanium 7	7440-32-6	1.72E-02	2.16E-02	3.18E-02	4.51E-02	24	120	Sch. 3	Standard	0.027%	0.038%
Tungsten 7	7440-33-7	N/A ¹	4.56E-01	N/A ¹	1.54E+00	24	5	Sch. 3	SL-JSL	_	31%
Zinc 7	7440-66-6	1.26E-02	4.68E-01	5.20E-03	1.55E+00	24	120	Sch. 3	Standard	0.004%	1.3%

Notes:

N/A¹ = Bismuth, Magnesium and Tungsten did not have emission rates prior to ALCF inclusion

golder.com