

The world needs concrete solutions

Cracks & Autogenous Healing

What is an Acceptable Crack Width in Concrete Pipe?

Written by: Tyson Dyck, EIT

Through proper design and curing, concrete can be considered one of the most durable building materials in existence. Concrete structures typically have a design life of 100 years; however, countless examples of ancient concrete structures are still erect today. Concrete is inherently strong under compressive stresses but weak in tension. This is why most concrete structures have embedded reinforcement to resist these tensile forces, typically in the form of steel wire/rods. Some cracking is normal and usually accounted for in a design. This just implies that the tensile forces have exceeded the concrete's strength capacity and the force is getting transferred to the steel reinforcement.

Figure 1: The Pantheon of Rome. This ancient concrete structure was originally constructed in 126AD.

So what is an acceptable level of cracking in concrete? There's no straight forward answer as different civil engineering disciplines each have their own design criteria. Concrete substructures typically have more tolerance to cracking versus concrete bridges and buildings which are more exposed to weathering from the natural elements. Based on the American Association of State Highways and Transportation Officials' (AASHTO) post installation guidelines for underground concrete pipe, a key reference for many municipal specifications, the following crack criteria is used [1]:

- Longitudinal crack width < .05"
 - Considered minor and not a cause for remediation.
- Longitudinal crack width greater than .05" but less than .10"
 - ▶ In areas where soil and runoff pH > 5.5, not a cause for remediation.
- Longitudinal crack width > .10"
 - > Remediate or replace the pipe.

Autogenous healing of concrete occurs when the continuity between two sides of a crack is restored without repair work. According to the Concrete Society, based in the UK, *"Autogenous healing is the natural process of crack repair that can occur in the presence of moisture and the absence of tensile stress" [2].* The formation of calcium carbonate crystals. CaCO₃ is the primary cause for the self-healing of cracks.

Calcium carbonate crystals are formed in two phases: The first

Figure 3: Calcium carbonate crystals have completely formed over an existing crack in this concrete pipe.

phase involves water reacting with calcium ions, Ca^{2+} , on the surface of the crack; this process occurs much more rapidly than the second phase [3]. After these surface ions are consumed, Ca^{2+} diffusion will develop due to the concentration gradient and continue to form $CaCO_3$ crystals at a slower rate. Through laboratory testing, it was found that autogenous healing is influenced by the crack width and the prevailing water pressure. Furthermore, the type of cement used and the type of water have no influence in forming $CaCO_3$. The formation of $CaCO_3$ crystals can be accelerated by:

- a rising water temperature
- a rising pH of the water
- a falling CO₂ partial pressure in the water

REFERENCES

- AASHTO, "Pipe Culvert Inspection for New Construction", http://inlandpipe.com/sites/inlandpipe.com/files/PDFs/AASHTO%20Post%20Installation %20Inspection%20Guideline.pdf
- 2. Roberts, D., *"Autogenous healing: the self sealing of fine cracks",* July, 2003, http://www.concrete.org.uk/fingertips-nuggets.asp?cmd=display&id=651
- 3. Edvardsen, C., *"Water Permeability and Autogenous Healing of Cracks in Concrete",* August 1999, http://www.unitedstatesconcrete.com/AutogenousHealingofCracks.pdf

IMAGES

Title. www.a1foundationcrackrepair.com/concrete-floor-cracks.html

- 1. www.mejplacehostel.com/17545/
- www.dentapreg.com/Technicians/Home/Bundle/Clinical-Applications
- www.concretepipe.org/wp-content/uploads/2014/07/Post_Install_Inspect_081011.pdf

Contact us for all your precast needs:

Derek Light, P. Eng. Technical Marketing Manager, Canada Region Cell: (403) 999-1246 Phone: (403) 720-9324 Derek.Light@lehighhanson.com www.inlandpipe.com

Tyson Dyck, EIT Technical Marketing Engineer in Training Cell: (587) 990-8903 Phone: (780) 448-1351 Tyson.Dyck@lehighcement.com www.inlandpipe.com

Tannis Karklin, EIT Technical Marketing Engineer in Training Cell: (204)-250-5270 Phone: (204-336-5013 Tannis.Karklin@lehighhanson.com

www.inlandpipe.com

INLAND Pipe HEIDELBERGCEMENTGroup

British Columbia

OCEAN PIPE 9265 Oak St. Vancouver, BC V6P 4B8 Office tel: 604 269 6700 Fax: 604 261 6751

INLAND PIPE 7336 112th Ave. NW Calgary, AB T3R 1R8 Toll free tel: 1888 788 2211 Toll free tel: 1 800 268 078 Tel: 780 448 1351 Office tel: 403 279 5531 Fax: 403 279 7648

Southern Alberta Northern Alberta Saskatchewan

INLAND PIPE 12250 170 Street Edmonton, AB T5V 1L7 Fax: 780 448 1354

INLAND PIPE 300 10th Ave. Regina, SK, S4N 6G7 Toll Free tel: 1877 974 7473 Office tel: 204 334 4300 Fax: 204 334 7957

Manitoba

INLAND PIPE 2494 Ferrier St. Winnipeg, MB, R2V 4P6 Toll Free tel: 1 877 974 7473 Office tel: 204 334 4300 Fax: 204 334 7957